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ABSTRACT
This research focuses on applying Markov modeling to the progression of type 2
diabetes mellitus. The study involves constructing a transition probability matrix
that represents various stages in the advancement of type 2 diabetes. By utilising
this matrix, the probability distributions for the consecutive occurrences of the same
state, looking one and two days ahead. Furthermore, the investigation formulates
explicit mathematical expressions for different statistical measures, utilizing Pear-
son’s coefficients. The developed model behaviour is examined through numerical
examples and sensitivity analysis. The primary objective of this study is to create
user-friendly tools, and developing appropriate software based on the derived math-
ematical formulations. The application of these findings can significantly enhance
the management of type 2 diabetes in healthcare settings, potentially extending to
decision support systems.

KEYWORDS
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1. Introduction

Type 2 diabetes is a chronic metabolic disorder and one of the most common non-
contagious diseases on the rise worldwide. Diabetes is the world’s most prominent
disease after cancer. There were two basic categories of diabetes. Type 1 Diabetes is
mostly observed in early age and childhood onset. However, type 2 diabetes may be
due to insulin insufficiency and insulin resistance. Hypoglycemia and hyperglycemia
are two major causes where we can classify the diabetes problem into two categories.
In hyperglycemia, the normal glucose levels are at a random point of time shall be
above 140 mg/dl. Whereas, in hypoglycemia, the blood sugar levels at random point
of time shall be less than 70 mg/dl.

Normally a healthy person’s glucose levels will be in the threshold of 70 mg/dl on
the lower side and 110 mg/dl on the higher side during the fasting time. Whenever
food intake happens the ingredients will be broken into carbohydrates and further
into glucose. As a result, the glucose levels will be increased in the blood serum. The
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indicators of increased glucose levels in the serum will be reached to the liver in turn,
the liver will store a part of the glucose as glycogen.

Whenever glucose levels increase in the bloodstream, the indicators will reach the
liver so that a part of the glucose will be stored as glycogen in the liver. Further, the
liver with the help of the pancreas produces Beta cells and insulin granules which will
be helpful for storing access levels of glucose Pintu the adipose tissues and muscles
as a result the increased levels of glucose in the bloodstream will come down. Hence
a healthy human body has a mechanism of regulating the levels of glucose intra-
sold while consuming the glucose human body cells need insulin to accommodate the
glucose molecule into the inner parts of the cell.

The extended hidden Markov model (HMM) was used to analyse spatial heterogene-
ity in rare phenomenon count data. It explored using Poisson and finite-mixture models
in disease mapping [1]. The widespread use of HMMs in biological sequence analysis,
understanding their applications in tasks like sequence alignments, gene annotation,
and similarity searches across molecular biology, through a tutorial-style review [2].
The HMM used in predicting diabetes risk over time, along with the application of
the IDF (International Diabetes Federation) risk score, introduced innovative medical
approaches [3]. The Markov model demonstrated that fasting blood sugar trends and
factors influencing type 2 diabetes progression and regression, estimating transition
probabilities and mean sojourn times to reveal valuable insights into disease dynamics
[4]. The Markov employed in predicting the reliability of haemoglobin A1c (HbA1c) as
a biomarker for type 2 diabetes and assessed its diagnostic and prognostic significance
in a three-state Markov model framework [5]. The HMMs effectively validate the Fram-
ingham Diabetes Risk Scoring Model (FDRSM), successfully identifying individuals at
increased risk of diabetes within an 8-year period [6]. The HMM was applied to type 2
Diabetes patients’ data set for estimating Diabetic levels, chance recovery etc., [7]. The
diabetic risk prediction was done by integrating Newton’s Divided Difference Method
(NDDM) with an HMM [8]. The HMM was used for identifying the disease patterns
from discrete-valued time series data derived from diabetic patients’ treatment records
[9]. A Markov model was used to analyse the progression of COVID-19 and established
key health indicators for effective healthcare management and assessment of disease
intensity [10]. A Markov model was employed to generate absent event details from
data recorded by diabetes patients, resulting in enhanced data quality and continuity,
with the outcomes underscoring the efficacy of this method in bolstering the overall
data integrity [11]. The open cohort study employed multi-state models to provide
clear insights into predicting late complications in type-2 diabetes, offering valuable
information for improving patient care strategies [12].

After reviewing the existing literature, it is felt that the HMM has been used ex-
tensively for disease mapping. In order to reach the goal of achieving the dynamics
of T2DM, this study has proposed a Markov Modelling to assess the dynamics of
the disease progression of type 2 diabetes efficiently. The focussed literature is mostly
emphasised using HMM for disease mapping, gene annotation etc., More often the
researchers have developed models in HMM. However, in the context of disease pro-
gression can be studied by Markov Modelling too with more precision. The outcome
has to be properly modelled with suitable Statistical tools.

Hence, the necessity of developing and predicting the parameters for the disease
progression of type 2 diabetes motivated us to proceed with the work in this direc-
tion. This study has given focus on the development of constructing a Markov model
based on transition probabilities. We have formulated the probability distributions for
different states in the spans of 1 day ahead, 2 days ahead sequences. The study also
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derived the statistical characteristics based on the probability distributions. Mathe-
matical formulae for all Karl-Pearson’s measures were derived from the formulated
probability distributions. Numerical data from sources of Wikipedia is collected and
analysed for a better understanding of the model behaviour in a common man’s per-
ception. Indicators of intensity of states like Sub-normal, Normal and Ab-normal are
obtained from the data. Statistical summary reports are explored after writing the
appropriate R-code and its execution. Data interpretation/statistical inferences are
carried out from the numerical illustration of real-time.

2. Stochastic Model

This model intends to derive probability mass functions of the discrete distribution of
a number of states. Let the states of transitions be of three categories, namely State –
1: Sub-normal ; State-2: Normal ; State-3: Abnormal. aij - the probability of transition
from ith state to jth state.

aij : Pr{Xn = j/Xn−1 = i}; i, j = 1, 2, 3; aij ≥ 0; and

3∑
j=1

aij = 1;∀i = 1, 2, 3

Let there be ‘i’ and ‘j’ states in which ‘i’ is the state of the previous trial and ‘j’ be the
state of the current trial i, j = 1, 2, 3 where, 1, 2, 3 represents the identified positive
cases in the states of Sub-normal, Normal, Ab-normal respectively.

Figure 1. The schematic diagram for three state Markov model of Type 2 Diabetes progression

3. Probability distributions for one day length of a sequence

P [X(R)] = n, Let R be a random variable, which denotes the number of times a
specific state occurs in the study of one day length. In this study, R can consist of
three states namely, Sub-Normal, Normal and Ab-Normal i.e., R=S (or) N (or) A. ‘n’
will be the number of times the happening of the state, it can take values 0 to 1. Here,
‘0’ indicates the non-happening, and ‘1’ indicates the happening of the particular state
under study.
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3.1. Probability distribution of Sub-Normal

P [X(S)] =


3∑

j=2
a(j) ; for X(S) = 0

a(1) ; for X(S) = 1

0 ; otherwise

(1)

Characteristic function is

ϕ[X(S)](t) =

3∑
j=2

a(j) + eit[a(1)] (2)

3.2. Probability distribution of Normal

P [X(S)] =


3∑

j=1,j ̸=2

a(j) ; for X(N) = 0

a(2) ; for X(N) = 1

0 ; otherwise

(3)

Characteristic function is

ϕ[X(N)](t) =

3∑
j=1,j ̸=2

a(j) + eit[a(2)] (4)

3.3. Probability distribution of Ab-Normal

P [X(A)] =


2∑

j=1
a(j) ; for X(A) = 0

a(3) ; for X(A) = 1

0 ; otherwise

(5)

Characteristic function is

ϕ[X(A)](t) =

2∑
j=1

a(j) + eit[a(3)] (6)

3.4. Statistical characteristics

In this section, some statistical characteristics are derived for the developed proba-
bility distributions given in equations 1, 3 and, 5 respectively. In this a(R) will be
the probability for happening of the states where the values of ‘R’ will be ‘S’ which
indicates the probability of Sub-normal,’N’ which indicates the probability of Normal
and ‘A’ indicates the probability of Ab-Normal.
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3.4.1. Mean

E[X(R)] = a(R) (7)

3.4.2. Variance

V [X(R)] = a(R)
[
1− a(R)

]
(8)

3.4.3. Third central moment

µ3[X(R)] = a(R)
[
1− a(R)

][
1− 2a(R)

]
(9)

3.4.4. Skewness

β1[X(R)] =

[
a(R)

[
1− a(R)

][
1− 2a(R)

]]2[
a(R)

[
1− a(R)

]]−3

(10)

3.4.5. Kurtosis

β2[X(R)] =

[
a(R)

[
1− a(R)

]2[
1− 3a(R)

][
1− a(R)

]][
a(R)

[
1− a(R)

]]−2

(11)

4. Probability distributions for two day length of sequence

On similar lines of one day length in section 3, the sequence of two day length is
considered in this section. The occurrence of non-happening of the state in two days
length, happening of the state once in two days, and happening of the state twice in
two days length are to be modelled for the derivation of the probability distribution.
The possibility of taking the value of ‘n’ is 0, 1, 2.

4.1. Probability distribution of Sub-Normal

P [X(S)] =



3∑
j=2

( 3∑
i=2

a(i)a
(2)
ij

)
; for X(S) = 0

3∑
i=2

a(i)a
(2)
i1 + a(1)

3∑
j=2

a
(2)
1j ; for X(S) = 1

a(1)a
(2)
11 ; for X(S) = 2

0 ; otherwise

(12)
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Characteristic function is

ϕ[X(S)](t) =

3∑
j=2

( 3∑
i=2

a(i)a
(2)
ij

)
+ eit

[ 3∑
i=2

a(i)a2i1 + a(1)

3∑
j=2

a
(2)
1j

]
+ e2it

[
a(1)a

(2)
11

]
(13)

4.2. Probability distribution of Normal

P [X(N)] =



3∑
j=1,j ̸=2

( 3∑
i=1,i ̸=2

a(i)a
(2)
ij

)
; for X(N) = 0

3∑
i=1,i ̸=2

a(i)a
(2)
i2 + a(2)

3∑
j=1,j ̸=2

a
(2)
2j ; for X(N) = 1

a(2)a
(2)
22 ; for X(N) = 2

0 ; otherwise

(14)

Characteristic function is

ϕ[X(N)](t) =

3∑
j=1,j ̸=2

( 3∑
i=1,i ̸=2

a(i)a
(2)
ij

)
+ eit

[ 3∑
i=1,i ̸=2

a(i)a2i2 + a(2)

3∑
j=1,j ̸=2

a
(2)
2j

]
+ e2it

[
a(2)a

(2)
22

]
(15)

4.3. Probability distribution of Ab-Normal

P [X(A)] =



2∑
j=1

( 2∑
i=1

a(i)a
(2)
ij

)
; for X(A) = 0

2∑
i=1

a(i)a
(2)
i3 + a(3)

2∑
j=1

a
(2)
3j ; for X(A) = 1

a(3)a
(2)
33 ; for X(A) = 2

0 ; otherwise

(16)

Characteristic function is

ϕ[X(A)](t) =

2∑
j=1

( 2∑
i=1

a(i)a
(2)
ij

)
+ eit

2∑
i=1

a(i)a
(2)
i3 + a(3)

2∑
j=1

a
(2)
3j + e2it

[
a(3)a

(2)
33

]
(17)

4.4. Statistical characteristics

Some statistical characteristics are explored for the probability distributions shown
in the above equations 12,14, and 16. Let us consider, γR is the probability of non-
happening of the state, αR is the probability of happening of the state once, βR is the
probability of happening of the state twice. Here, R=S,N,A.
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4.4.1. Mean

E[X(R)] = αR + 2βR (18)

4.4.2. Variance

V [X(R)] = αR(1− αR) + 4βR(1− αR − βR) (19)

4.4.3. Third central moment

µ3[X(R)] = 2α3
R + 16β3

R − 3α2
R(1− 4βR)− 24β2

R(1− αR) + αR(1− 18βR) + 8βR
(20)

4.4.4. Skewness

β1[X(R)] =
[
2α3

R + 16β3
R − 3α2

R(1− 4βR)− 24β2
R(1− αR) + αR(1− 18βR) + 8βR

]2
[
αR(1− αR) + 4βR(1− αR − βR)

]−3
(21)

4.4.5. Kurtosis

β2[X(R)] =
[
αR + 4βR(4− 10αR)− 4α2

R(1− 12βR)− 8β2
R(8− 15αR + 9α2

R) + 6α3
R(1− 4βR)

96β3
R(1− αR)− 3α4

R − 48β4
R

][
αR(1− αR) + 4βR(1− αR − βR)

]−2
(22)

5. Description of Methodology

The current study is on developing Markov model for three (Sub-Normal, Normal,
Ab-Normal) states of type 2 Diabetes. Separate probability distribution developed for
each state (Sub-Normal, Normal, Ab-Normal). Statistical measures like mean, vari-
ance, coefficient variation, and Pearson’s coefficients are derived for each state using a
corresponding developed probability distribution. For understanding the behaviour of
developed model numerical data set is to be considered for this study. The secondary
data on Diabetes of procured from the internet sources which consists of 190 obser-
vations/records of 2 patients. The observations have been recorded every 15 minutes
from 8 hours to 20 hours from the patients. The number of incidences per 15 min is
categorised as three transitions: Sub-Normal, Normal, and Ab-normal.

The classification of states in this study is as follows: Sub-normal transition arrives
if the current reading score is less than 90 mg/dl (FBS level), and the Normal comes
if the reading score is between 90 mg/dl and 120 mg/dl. The state of Ab-normal has
arrived when the current reading’s score is more than 120 mg/dl.
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6. Results and Discussion

6.1. Probability distribution for Sub-Normal state

The probability distribution for one and two days length of Sub-Normal state is placed
in table-1 and table-2 respectively.

Table 1. Probability dis-

tribution for one day length

X(S) 0 1

P[X(S)] 0.885 0.115

From table-1, it is observed that the non-happening of the Sub-Normal state has a
chance of 0.885 and the happening of the condition has a chance of 0.115. Hence, it is
inferred that the non-happening of the Sub-Normal is more likely than the happening
in the Sub-Normal state.

Table 2. Probability distribution for two

days length

X(S) 0 1 2

P[X(S)] 0.84691 0.0690166 0.084073

From table-2, it is observed that the non-happening of the state has a chance of
0.84691 and happening of the state once in two days is 0.0690166 and the occurrence
of the condition twice in two days has a chance of 0.084073. Hence, we may interpret
the result of non-occurrence of the Sub-Normal state as more likely when compared
to others.

6.1.1. Statistical measures for Sub-Normal state

The statistical characteristics for the Sub-Normal state are placed in the table-3 for
understanding the behaviour of the developed model.

Table 3. Statistical results for Sub-Normal

State

Statistical measure 1 day 2 day

Mean 0.115 0.237163
Variance 0.101775 0.349063
Third Cental moment 0.078367 0.479908
Beta 1 5.825596 5.415072
Beta 2 6.825596 6.877236

6.2. Probability distribution for Normal state

The probability distribution for one and two days length of Normal state is placed in
table-4 and table-5 respectively.
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Table 4. Probability distribution for one

day length

X(N) 0 1

P[X(N)] 0.630789474 0.369210526

From table-4, it is observed that the non-happening of the state is having a chance
of 0.630789474 and the happening of the state has a chance of 0.369210526. Hence,
it may be inferred that the non-happening of the Normal has more likely than the
happening of the Normal state.

Table 5. Probability distribution for two days length

X(S) 0 1 2

P[X(S)] 0.512818977 0.234412236 0.252768787

From table-5, it is observed that the non-happening of the state has a chance of
0.512818977 and happening of the state once is 0.234412236 and the occurrence of the
state twice in a run has a chance of 0.252768787. Hence, we may interpret the result
of non-occurrence of the Normal state as more likely when compared to others.

6.2.1. Statistical measures for Normal state

The statistical characteristics for the Normal state are placed in the table-6 for un-
derstanding the behaviour of the developed model.

Table 6. Statistical results for Normal State

Statistical measure 1 day 2 day

Mean 0.369210526 0.73994981
Variance 0.232894114 0.697961663
Third Cental moment 0.060920197 0.302051179
Beta 1 0.293796802 0.268328229
Beta 2 1.293796802 1.625792875

6.3. Probability distribution for Ab-Normal state

The probability distribution for one and two days length of the Ab-Normal state is
placed in table-7and table-8 respectively.

Table 7. Probability distribution for
one day length

X(A) 0 1

P[X(A)] 0.484211 0.515789474

From table-7, it is observed that the non-happening of the state is having a chance
of 0.484211 and the happening of the state has a chance of 0.515789474. Hence, it
may be inferred that the happening of the Ab-Normal is more likely than the non-
happening of the Ab-Normal state.
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Table 8. Probability distribution for two days

length

X(A) 0 1 2

P[X(A)] 0.400664 0.17578563 0.423551

From table-8, it is observed that the non-happening of the state has a chance of
0.400664 and the occurrence of the state once is 0.17578563 and the occurrence of the
state twice in a run has a chance of 0.423551. Hence, it interprets the result that the
occurrence of the Ab-normal state on twice in two days length is more likely when
compared to other states.

6.3.1. Statistical measures for Ab-Normal state

The statistical characteristics for the Ab-Normal state are placed in the table-9 for
understanding the behaviour of the developed model.

Table 9. Statistical results for Ab-Normal State

Statistical measure 1 day 2 day

Mean 0.515789 1.022887
Variance 0.249751 0.823691
Third Cental moment -0.00789 -0.03368
Beta 1 0.003993 0.00203
Beta 2 1.003993 1.215549

6.4. Recommendations

From table 3,6, and 9 it is observed that the average occurrence of one day length
for Sub-Normal, Normal, and Ab-Normal states are 0.115, 0.369210526, and 0.515789
respectively. Hence, it reveals that the average occurrence of an Ab-Normal state in
one day is more likely than other states (Sub-Normal, and Normal). Similarly, in
the sequence of two days the average occurrence for Sub-Normal, Normal, and Ab-
Normal states are 0.237163, 0.73994981, and 1.022887 respectively. Hence, it reveals
that the occurrence of an Ab-Normal state (1.022887 ≃ 1) in two days is more likely
than other states (Sub-Normal, and Normal). Healthcare professionals may find these
findings useful in controlling and monitoring patient diabetes levels.

The variance of one day length for Sub-Normal, Normal, and Ab-Normal states are
0.101775, 0.232894114, and 0.249751 respectively. In two days length for Sub-Normal,
Normal, and Ab-Normal states are 0.349063, 0.697961663, and 0.823691 respectively.
Hence, it is observed that there is less volatility observed in the Sub-Normal and more
in the Ab-Normal state of both one and two days sequence length. It is indicating
that there are fluctuations in blood sugar levels. These results may be helpful to the
healthcare professionals giving good treatment and assessing glycemic control stability.

Regarding Skewness, the third central in both days sequence length of Sub-Normal,
and Normal states are non-negative and positive in the Ab-Normal state. It is inter-
preted that the distribution is positively skewed in Sub-Normal and Normal states,
and negatively skewed in Ab-Normal state. These results may help doctors in giving
optimal treatment to patients in controlling diabetic levels.
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The coefficient of Kurtosis in both days sequence length of Normal and Ab-Normal
states is less than 3, and greater than 3 in the Sub-Normal state. It reveals that the
distribution is platy Kurtic in Normal, and Ab-Normal states, and lepto Kurtic in Sub-
Normal state. These are helpful to healthcare professionals in managing hypoglycemic
or hyperglycemic incidents.

7. Conclusion

The provided analysis delves into the probabilities of Sub-Normal, Normal, and Ab-
Normal states, revealing that the non-occurrence of Sub-Normal and Normal states is
more likely. This trend persists across both one day and two days sequences, where the
Ab-Normal state’s occurrence stands out. The data highlights the Ab-Normal state’s
prevalence, indicating its significance in diabetes management.

Moreover, the examination of variance underscores the volatility in blood sugar lev-
els across these states. Notably, the Sub-Normal state showcases lower volatility, while
the Ab-Normal state demonstrates higher fluctuations. This insight into variability
can guide healthcare professionals in devising strategies for stable glycemic control.

Skewness and kurtosis analyses offer further insights. Sub-Normal and Normal
states exhibit positive skewness and platykurtic distribution, signifying their distri-
bution shape. In contrast, the Ab-Normal state displays negative skewness and lep-
tokurtic distribution, revealing its distinct distribution characteristics.

In summation, this multifaceted analysis provides comprehensive insights crucial for
healthcare practitioners managing diabetes. The probabilities, average occurrences,
volatility, and distribution properties of different states collectively contribute to an
enhanced understanding of blood sugar dynamics, fostering more effective and tailored
patient care strategies.
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