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MULTILEVEL HIDDEN MARKOV MODELS FOR 

STUDYING TYPE-1 DIABETES 

 

Abstract 

Type-1 diabetes, also known as insulin-dependent diabetes, is a 

chronic illness brought on by the body’s inability to manufacture 

insulin. This study intends to comprehend the glucose levels of 12 

patients from Chinese sources 572 times continuously throughout 143 

hours, or once every 15 minutes. We used various Markov models, 

including the Markov model, hidden Markov model (HMM), and 

multilevel hidden Markov model, to comprehend the pattern in           

the data. Three states, hypoglycemia, normal blood sugar, and 

hyperglycemia, were used to create the probability mass function for 

the Markov model. For the HMM, emission states increase, decrease, 

and remain the same, whereas concealed states are hypoglycemia, 
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normal, and hyperglycemia. We select data with a positively skewed 

distribution for the multilevel hidden Markov model, and the Akaike 

information criterion (AIC) score determines the hidden states. The 

models’ respective AIC values are Markov 3138.475 and MHMM 

290.689. According to AIC values, the multilevel hidden Markov 

model is the best. 

1. Introduction 

Type-1 diabetes, also called insulin-dependent diabetes, is a chronic 

medical condition caused by a lack of capability of the body to produce 

insulin. Insulin is a hormone produced by the pancreas called beta cells. 

Insulin helps regulate blood sugar levels and makes it easier for glucose to 

enter the cells, which can be used for energy. When the body does not 

produce and use enough insulin, glucose accumulates in the blood. High 

blood sugar levels can lead to serious health problems. Type-1 diabetes           

is a condition caused by an autoimmune reaction. The immune system 

mistakenly attacks and destroys the pancreas’ insulin beta cells.       

Although there is no definitive explanation for this autoimmune reaction, 

environmental factors and genetic predispositions are believed to play a role. 

Typically, Type-1 diabetes first appears in childhood or adolescence. 

Extreme thirst, frequent urination, unexplained weight loss, increased 

hunger, weariness, and blurred vision are just a few of the symptoms that 

might appear suddenly and severely. These symptoms are brought on by the 

body’s inability to utilize glucose properly, which results in the breakdown 

of fats and proteins for energy. For Type-1 diabetes therapy, daily insulin 

delivery via injections or an insulin pump is necessary to control blood sugar 

levels. People with Type-1 diabetes must frequently check their blood sugar 

levels, usually several times daily, and adjust their insulin dosages as 

appropriate. Controlling the sickness requires a healthy lifestyle, regular 

exercise, and a proper diet. People with Type-1 diabetes must be watchful 

and constantly care for themselves to avoid complications, including 

cardiovascular disease, kidney issues, nerve damage, and eye issues. 

Continuous glucose monitoring devices and advancements in insulin 

delivery technology have significantly improved the quality of life for 
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persons with Type-1 diabetes and allowed for more precise and helpful 

treatment. 

The World Health Organization (WHO) reports that the number of 

persons with diabetes has continuously climbed from 108 million in 1980 to 

422 million in 2014. Diabetes prevalence has risen more quickly in low- and 

middle-income nations than in high-income nations. A little over nine 

million individuals worldwide had Type-1 diabetes in 2017, with high-

income nations housing the bulk of those affected. Type-1 diabetes has no 

recognized cause, and there is no known cure. About 2 million deaths were 

brought on by diabetes and renal disease in 2019. 

These papers collectively suggest that Markov models can help study 

diabetes. Compare three Markov models for variations in blood sugar levels 

in diabetic individuals to find the best model (Dumitrescu and Popescu [5]). 

The Markov model is a suggested method for effectively managing and 

tracking the health of the equipment (Wang et al. [12]). Experiments show 

that the model has a low average absolute error and can predict the time until 

a preset event as well as the present state with accuracy (Cartella et al. [2]). 

Using separate classifiers on the same set of data could improve prediction 

accuracy (Gill and Mittal [6]). Aarts [1] suggested that multivariate data 

reduces the required sample size and increases the stability of the outcomes. 

Varshney et al. [11] used the hidden Markov model, which highlights the 

danger of problems for patients with high hemoglobin in A1c level; one may 

predict the probabilities of transition between various stages of diabetes. 

Ruiz-Suarez et al. [10] applied hidden Markov models, and their extensions 

are effective tools for categorizing observations resulting from temporal-

dependent systems. Markov models are used to predict missing event types 

in diabetic patient data, enhancing the data quality (de Carvalho et al. [3]). 

The work of Kirchherr et al. [8] on long-term plasticity in neuronal 

populations would benefit greatly from a multilevel Bayesian HMM 

paradigm. Ginn et al. [7] concluded that the number of subjects strongly 

influences a model’s performance. Multivariate data typically reduces the 

required sample size and enhances the stability of the outcomes (Moraga and 

Aarts [9]). 
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2. Stochastic Modelling 

Stochastic models are deterministic models that describe randomness 

over time. These models are used in many areas like Physics, bioinformatics, 

economics, engineering, etc. There are different models for diabetes. In this 

context, we are comparing three different models for Type-1 diabetes with 

stochastic properties. 

Markov model 

Markov models are stochastic models for sequential data where the 

future depends only on the previous immediate state. This model follows the 

memory-less property. The mathematical description of the model with a 

transition diagram is as follows: 

( ).1 iXjXPa nnij =|== +  

 

Figure 1. Schematic diagram of Markov model with three states, namely, S1 

means hypoglycemia, S2 is normal and S3 is hyperglycemia. 

Probability mass function (PMF) 

The probability mass function was formulated based on occurrences of 

the state for one-state, two-state and three-state emission sequences. The 

mathematical expressions are given. 
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PMF for one-state 

Let us assume sample space = {Hypo, Normal, Hyper} and favorable 

space will be a count of states. Then for one emission state, we have three 

possibilities as shown in the given PMF: 
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PMF for two-state sequence 

Assume sample space = {Hypo, Normal, Hyper} and favorable space to 

be a count of states. Then, for two emission state, we have 8 possibilities as 

shown in the given PMF: 
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and 
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PMF for three-state sequence 

Let us assume sample space = {Hypo, Normal, Hyper} and favorable 

space will be a count of states. Then, for three emission state, we have 27 

possibilities as shown in the given PMF: 
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Hidden Markov model 

Consider an observational series tX  that is recorded for ....,,1 Tt =  

Assume that the distribution of tX  is influenced by state, a latent 

(unobserved) variable. The sequence ( )tt XS ,  forms a hidden Markov 

model (HMM) if tS  is a Markov chain of order 1 and for each ,1≥t  tX  

and 1+tX  are conditionally independent. Figure 2 provides a graphic 



Tirupathi Rao Padi and Surnam Narendra 168 

illustration of the HMM structure. The parameters of an HMM include the 

state initial probabilities, the state transition probability matrix, and the 

emission distribution parameters, which describe the conditional distribution 

of observations given states. The sojourn time is the amount of time spent in 

a state. The sojourn time distribution is shown to be a geometric distribution 

in the HMM model: 

Initial probabilities ( ) ,...,,2,1,1 niP ii =∀=π=π=  

Transition probabilities ( ) ( ),...,,, 1111 ttttt XXPXXXXP |=|= +−+  

Emission probabilities ( )11121 ...,,,,...,,, XXXEEEEP ttttt −−−|=  

( ).tt XEP |=  

 

Figure 2. Schematic diagram for the HMM, the emission states are 

represented by the letters E1, E2, and E3, which stand for increasing, 

decreasing, and remaining the same, respectively, and the hidden states are 

represented by the letters H1, H2, and H3. 

Multilevel hidden Markov model 

An HMM is called a multilayer hidden Markov model (MHMM). Several 

HMMs can be executed simultaneously. States can represent higher-level 

concepts or behaviors in this way, helping to capture more intricate patterns 

and connections in the data. In this work, we studied a state sequence 

consisting of three hidden states and one dependent variable with three 

categories. 
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3. Numerical Study 

Numerical illustrations are essential for modelling behaviours. This 

study focused on secondary data from Type-1 diabetes (ShanghaiT1DM) 

corresponding to 12 Type-1 diabetes patients. We combined 12 patent data 

with 1 column to apply various Markov models in this study. Modified data 

includes patient ID, Date, Time, and Glucose levels every 15 min 572 times 

with 143hr of data. Template of Excel data and data representation followed. 

Data analysis and simulation were performed using R studio and Excel. 

         

Figure 3. Data visualization of glucose levels. 

From Figure 3, it is clear that data is sequential over a period of time.        

So here, the assumption of the stochastic model and Markov property is 

satisfied. So, we applied different Markov models to understand the trend in 

glucose levels. 

Markov chain 

To implement this Markov model for the given data set, glucose levels 

are divided into three categories: Hypoglycemia: glucose levels are less than 

90mg/dl in the CGM (mg/dl). Normal: glucose levels between 90 and 

130mg/dl. Hypertension: glucose levels above 130mg/dl are considered. 

Following the consideration of states, the state sequence was checked using 

a plot in Rstudio to confirm the Markov property. The p-value of this 

Markov property is approximately 0.3994, and the chi-square statistic is 

14.69313 with a degree of freedom of 14. Here p-value exceeds 0.05. Data 

follows Markov property. Initial Probability Vector, Transition Probability, 

Standard Error and 95% Confidence Interval matrices are as follows: 



Tirupathi Rao Padi and Surnam Narendra 170 
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The transition probability matrix appears as the first matrix, followed by 

the standard error matrix and the two confidence intervals for the transition 

probability matrix. Given that the Markov chain is irreducible, it is evident 

from the preceding matrix that a periodic Markov that is persistent, ergodic, 

and has a stationary distribution, is { }.6068052.0,2391579.0,1540369.0=π  

It is evident from the stationary distribution that the likelihood of 

hyperglycemia glucose levels in the future is considerable. According to the 

Markov model, there are more opportunities as glucose levels move from 

hyperglycemia to hyperglycemia, and the change from hyperglycemia to 

normal has no bearing on the situation, much like it does with hypoglycemia. 

A normal patient is at a high risk of developing hyperglycemia or 

hypoglycemia. Patients with hypoglycemia have a good likelihood of 

returning to normal, but they also have a lower risk of developing 

hyperglycemia. 

 

Figure 4. Transition probability matrix plot. 
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Algorithm for simulation in R 

To forecast the glucose levels state by the Markov model, we applied 

Markov algorithm used by Dobrow [4] in R to simulate states. The algorithm 

and results are as follows: 

Require: Initial probability vector ( ),π  transition matrix ( ),p  number of 

steps ( ).N  

Output: nXXXX ...,,,, 210  

Algorithm. Choose 0X  from the initial probability vector. 

For ni ...,,1=  

Assume that JX i =−1  

Set =p  jth row of p 

Generate iX  according to p end For 

 

Figure 5. Simulated and actual states plot. 

From the above-simulated states by prior transition probability matrix 

(TPM), states are coming accurately with less error. In future, we can 

estimate the next glucose level state by the simulation. The numerical 

probability mass functions are given below: 

Table 1. Probability mass function for hypo state 

Hypo 0 1 2 3 

One 0.8452797 0.1547203 - - 

Two 0.8318764 0.02680656 0.141317 - 

Three 0.8193962 0.0261313 0.02539765 0.1290749 
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Table 2. Probability mass function for normal state 

Normal 0 1 2 3 

One 0.8075466 0.1924534 - - 

Two 0.7779684 0.05929852 0.1627331 - 

Three 0.7499342 0.06077464 0.05168871 0.1376025 

Table 3. Probability mass function for hyper state 

Hyper 0 1 2 3 

One 0.3471737 0.6528263 - - 

Two 0.3305653 0.03307477 0.6363599 - 

Three 0.3153653 0.02928244 0.03335255 0.6203089 

 

Figure 6. Three-state probability plot. 

According to the tables and figures above, the likelihood of 

hyperglycemia is higher when it does not occur than when it does, but all 

other probability values except three are significant. While the non-

occurrence of three from the usual condition is high, all likelihood estimates 

vary significantly. The likelihood of four hyperglycemia states occurring is 

higher than their non-occurrence, although all but two of the maximum 

probability values are significant. Based on the three tables above, the 

likelihood of hyperglycemia is high and significant. 

Hidden Markov model 

The hidden Markov model consists of transition probabilities with states 

names S = {Hypo, Normal, Hyper} and emission states E = {Increase, 
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Decrease, Remain same}. The numerical matrix and graphical presentation 

are as follows: 

Emission probability .

1009.04993.03998.0

1211.04822.03967.0

1977.04021.04002.0
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



=  

 

Figure 7. Emission probability matrix plot. 

As we can see from the matrix and plot above, there is a significant risk 

of hyperglycemia when glucose levels rise or fall. When glucose levels fall, 

there is a good possibility that everything will return to normal; the 

significance likelihood will climb and stay the same. When there is both a 

reduction and a rise, hypoglycemia results. 

Multilevel hidden Markov model 

Using Bayesian estimation, the MHMM function fits a multilevel hidden 

Markov model to data from multiple subjects. One broad “population” 

HMM is estimated using a multilevel approach that considers subject 

heterogeneity. The function may manage covariates at the subject level and 

different subject-level observation times. A hybrid metropolis is used for 

estimation within the Gibbs sampler, and the forward-backwards algorithm 

is sequentially finished for each topic. Here, we performed MHMM for the 

data by patient ID 12 patients with glucose levels every 15 minutes. In this 

model, we used the technique of AIC to determine hidden states. We tested 
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with 2, 3 and 4 hidden states. The three hidden states model got a low 

average AIC, i.e., 290.6883, and the average log-likelihood is –133.3441. So, 

we performed further analysis with three hidden states. The number of 

dependent variables in this model is one, i.e., glucose levels. In the model fit, 

we have done 1000 iterations used in the Markov chain Monte Carlo 

algorithm with a burn-in of 200 bootstrap samples. The transition and 

emission probabilities matrices are as follows: 

.
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Figure 8. 12 patients transition probabilities matrix plot. 

The above graph shows that the transition happening from the same  

state to the same state is high compared to the rest. The main advantage of 

MHMM was comparing more than one HMM at a time using bootstrap and 

MCMC algorithms. Based on the AIC value, MHMM fits the best model for 

this data. 

4. Results and Discussion 

This study primarily examined various Markov models for classifying 

diabetes. Here, we have three separate models: Markov models, hidden 
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Markov models and multilevel hidden Markov models. The MHMM Markov 

method was used to simultaneously comprehend several HMMs with various 

subjects. We separated the Markov model section into three states based on 

the glucose levels. The probability mass function of the Markov model - a 

persistent, ergodic, periodic, irreducible chain - was determined. The 

transition from hyperglycemia to hyperglycemia presents more 

opportunities, while the transition from hyperglycemia to normal is not as 

significant as the transition from hypoglycemia. It is reasonable to assume 

that a normal patient will experience either hyperglycemia or hypoglycemia. 

A patient with hypoglycemia is less likely to experience hyperglycemia 

but has a fair probability of getting back to normal. Because of the 

simulation of the previous TPM and IPV states, states are arriving more 

accurately and with less mistake. We have the ability to forecast and 

influence the glucose level situation in the future. When glucose levels 

decrease or increase by HMM, hyperglycemia is very likely to happen. 

When blood glucose levels drop, there is a good chance they will rise back 

up to normal and a good chance they will stay the same. Hypoglycemia 

occurs when both a reduction and an increase take place. In comparison to 

the other two models, the three-state model for MHMM has the best AIC 

value. The primary benefit of MHMM was its ability to be used with the 

MCMC algorithm if we had data from 12 patients and applied HMM to each 

patient instead. Lastly, hyperglycemia is quite likely based on glucose levels. 

According to the data, hyperglycemia is the second most frequent 

occurrence, followed by normal. Using both real and simulated data, we 

apply the Markov model to blood glucose levels and find that it performs the 

best in predicting the next state. 
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