
 

Advances and Applications in Statistics 

© 2024 Pushpa Publishing House, Prayagraj, India 
https://pphmjopenaccess.com 
https://doi.org/10.17654/0972361724036 
Volume 91, Number 6, 2024, Pages 673-697                       P-ISSN: 0972-3617 

 

Received: September 1, 2023;  Revised: March 30, 2024;  Accepted: April 13, 2024 

2020 Mathematics Subject Classification: 60J10, 60J20, 60J22, 60G05. 

Keywords and phrases: hidden Markov model, share price, probability distribution, national 

stock exchange, transition probability. 
*Corresponding author 

How to cite this article: Tirupathi Rao Padi, Sarode Rekha and Gulbadin Farooq Dar, 

Predictive modeling for share closing prices through hidden Markov models with a            

special reference to the national stock exchange, Advances and Applications in Statistics  

91(6) (2024), 673-697. https://doi.org/10.17654/0972361724036 

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 

Published Online: April 25, 2024 

PREDICTIVE MODELING FOR SHARE CLOSING 

PRICES THROUGH HIDDEN MARKOV MODELS WITH 

A SPECIAL REFERENCE TO THE NATIONAL 

STOCK EXCHANGE 

 

Abstract 

Predicting share prices is crucial in financial markets for traders and 

portfolio managers. This study employs hidden Markov modeling, 

focusing on three key parameters: initial probability vector                 

(IPV), transition probability matrix (TPM), and emission/observed 
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probability matrix (EPM/OPM). TPM and EPM are derived by 

considering both hidden and emission states. Probability distributions 

are formulated for increment, remain same, and decrement states. The 

model’s behaviour is explored through statistical measures and 

Pearson’s coefficients. This model aids in estimating stock price 

movements, and long-term and short-term returns, and can be 

compared with the capital asset pricing model (CAPM). Numerical 

illustrations are used for clarity, and model goodness of fit is assessed 

with the chi-square test. Developing user-friendly digital interfaces 

can enhance traders’ understanding of Wipro’s stock market 

behaviour in the Indian context. 

1. Introduction 

Modeling is a core activity of constructing the structural connectivity 

between the study variables. The objective of modeling is to explore the 

influence of the factor variables on the response variables. Markov processes 

deal with the stochastic processes of memoryless property in which the 

happening of the current event is influenced by the immediate previous event 

only, not by the remaining previous events. Markov modeling deals with 

studying the transit behaviour of the states in any time series data. The 

transition probability matrix (TPM) provides all the possible chances of 

different combinations between the previous and the current trial’s results 

(states). Hidden Markov modeling is an activity of building a relational 

processing structure between the observed/emission and the hidden states. 

The usage of stochastic models for predicting the dynamics of the stock 

market is an established research methodology. Much research literature 

study is reported on measuring the stock values. The models namely 

Brownian motion processes, Weiner processes, Black-Scholes model, birth-

death processes, investment and liquidation processes, Markov process, 

hidden Markov model (HMMs) etc., have been considered for predicting the 

different parameters of the stock market.  

Making use of stochastic calculus by means of differential equations is 

the most commonness among all the above mentioned models. The above 



Predictive Modeling for Share Closing Prices … 675 

models are successful in predicting the market behaviour with desired vital 

parameters such as capital asset pricing, returns on income (ROI),              

risk adjusted return on capital (RAROC), return on risk adjusted capital 

(RORAC), risk adjusted return on risk adjusted capital (RARORAC), etc. 

Further, these models have made the conventional methodologies in making 

use of probability generating functions (PGFs) for estimating the desired 

parameters. 

Black and Scholes [3] studied the dynamics of prices in derivative 

securities. Black-Scholes formula for the price of a European option is one 

of the first fundamental results in this direction. 

Bachelier [1] formulated a theory to analyze the movement of asset 

prices under risk, employing Brownian motion and assuming that the 

increments in stock prices are independent. This theory was specifically 

tailored for application in the Paris stock market. Neftci [2] developed 

Weiner Kolmogorov’s prediction theory for forecasting the financial market. 

Hassan et al. [5] proposed and implemented a fusion model by combining 

the HMM, artificial neural networks (ANNs) and genetic algorithms (GAs) 

to forecast financial market behaviour. Rao and Hong [6] used HMM and 

support vector machines (SVMs) to forecast the stock price and its 

movements. Padi and Gudala [4] developed the bivariate Poisson model with 

the incomings, outgoings, and mutual transfers of investments between and 

within the portfolios using stochastic differential equations and the notions 

of bivariate linear birth, death, and migration processes. Adesokan et al. [7] 

analyzed the Nigerian stock market expected returns using the Markov chain 

and capital asset price model (CAPM). Su and Yi [8] proposed the HMM for 

the efficient prediction of stock price in the financial market. Dar et al. [9] 

used the Markov chain model for the analysis of the stock movement and 

forecasting the share prices of TCS Ltd. Padi et al. [10] applied the discrete-

time Markov chain to analyze the behaviour of share prices with reference to 

SBI. Dar et al. [11] used HMM for a proper understanding of the financial 

variables in the stock market. 
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Limited evidence exists for deriving probability mass functions of states 

with varying sequence lengths. Predictive modeling, particularly for       

Markov processes, lacks attention in parameter estimation. Exploring      

transit state probability distributions can provide better information. 

Parametric estimation within the Markov model and extending to probability 

distributions requires further attention from probability researchers. 

This study addresses the gap by emphasizing the importance of hidden 

Markov modeling to establish relationships between emission and hidden 

variables. It focuses on formulating PMFs for discrete hidden Markov 

processes, particularly the length of state sequence distributions. The study 

derives explicit mathematical relations for various statistical measures based 

on these probability distributions. 

In this study, hidden Markov models (HMMs) are used to analyze NSE 

closing prices of Wipro’s shares, with three hidden states: gain, normal, and 

fall, corresponding to observed states of increment, remain same, and 

decrement. The key parameters are the initial probability vector (IPV), 

transition probability matrix (TPM), and observed probability matrix  

(OPM). The study aims to (i) formulate probability distribution models for 

increment, remain same, and decrement states, (ii) derive mathematical 

relations for statistical measures and Pearson’s coefficients, (iii) analyze 

real-time NSE and Wipro’s closing prices to find HMM parameters, (iv) 

understand market behaviour through probability distributions and statistical 

measures. 

2. Stochastic Model 

This model aims to derive the discrete probability distributions of          

the number of different emission states. Here, we have considered three 

transition emission states, namely (i) increment state, (ii) remain same state, 

and (iii) decrement state. 

2.1. Notations and terminology 

iπ  :  Initial probability for ith hidden state, ;0≥πi  for all .3,2,1=i  
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nX  :  Resulting value of hidden states at nth trail, ....,3,2,1=n  

mY  :  Resulting value of emission/observed state with the influence of 

the related hidden states at mth trail, ....,3,2,1=m  

kla  :  The transition probability within hidden states; 

{ } ;01 ≥== − kXlXP nn  .10 ≤≤ kla  

klb  :  The emission/observed probability between hidden and emission 

state; { } .10;01 ≤≤≥== − klmm bkXlYP  

tx  :  Share price of the NSE at tth day. 

tx∆  :  ;1−− tt xx  the difference between the current day (t) share value 

and previous day ( )1−t  share value NSE. 

tdx  :  The dividend at time ‘t’; .
1−

∆=
t

t
t

x

x
dx  

n :  The number of observations in NSE considered under study. 

xµ  :  Mean dividend value of the share; i.e., 
=

=µ
n

t

tx dx
n 1

.
1

 

2
xσ  :  Variance of the dividend value of the share, i.e., =σ2

x  

( )
=

µ−
−

n

t

xtdx
n

1

2.
1

1
 

ty  :  Share price of the Wipro’s Ltd. at tth day.  

ty∆  :  ;1−− tt yy  the difference between the current day (t) share value 

and previous day ( )1−t  share value in Wipro Ltd.  

tdy  :  The dividend of Wipro at time ‘t’; .
1−

∆=
t

t
t

y

y
dy  

m :  The number of observations in Wipro considered under study. 
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yµ  :  Mean dividend value of the share of Wipro, i.e., 
=

=µ
m

t

ty dy
m 1

.
1

 

2
yσ  :  Variance of the dividend value of the share of Wipro, i.e., =σ2

y  

( )
=

µ−
−

m

t

ytdy
m

1

2.
1

1
 

2.2. Schematic diagram for three states HMM of one day length 

The schematic diagram of HMM for increment state occurring in one 

day length is given below: 

 

Figure 1. HMM for increment state occurs is one day length. 

A similar schematic diagram follows for 

 (i) HMM for remain same (R) state of length one. 

(ii) HMM for decrement (D) state of length one. 

2.3. Schematic diagram for three states HMM of two days length 

The schematic diagram of HMM for increment state occurring in a 

length of sequence two is given below: 
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Figure 2. HMM for two days increment (I) state occurs in a length of 

sequence two. 

Similar schematic diagrams can be obtained for (a) HMM for first day is 

on increment (I) state second day is on remain same (R) state in a length of 

sequence two, (b) HMM for first day is on increment (I) state, second day is 

on decrement (D) state in a length of sequence two, (c) HMM for first day is 

on remain same (R) state, second day is on increment (I) state in a length of 

sequence two, (d) HMM for both days remain same (R) state in a length of 

sequence two, (e) HMM for first day is on remain same (R) state, second day 

is on decrement (D) state in a length of sequence two, (f) HMM for first day 

is on decrement (D) state, second day is on increment (I) state in a length of 

sequence two, (g) HMM for first day is on decrement (D) state, second day 

is on remain same (R) state in a length of sequence two, (h) HMM for both 

days decrement (D) state in a length of sequence two. 

3. Probability Distribution for One Day Sequence 

Let ( ) mX m =ω 1  be the random variable, which denotes the happening 

of the state. 1mω  is indicated with three different states, namely increment 

state, remain same state, and decrement state, i.e., Im =ω 1  or R or D. Let 

‘m’ be the number of times the event happening in that state, ,1,0=m  

where ‘0’ represents non-happening of the state and ‘1’ represents the 

happening of the state. 
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We use the following notations in Subsection 3.1: 

( ) [ ( ) ]
= =

π=
3

1

3

1
1011 ;

i j

jijix baHVP  

( ) [ ( ) ]
= =

π=
3

1

3

1
2021 ;

i j

jijix baHVP  

( ) [ ( ) ]
= =

π=
3

1

3

1
3031 .

i j

jijix baHVP  

3.1. Probability mass function for increment state occurs in one day 

length  

The probability mass function for increment state occurring in one day 

length is as follows: 

 ( )( )
( )

( )








=

=
==ω 

=

.1;

,0;

11

3

2

1
1

xVP

xVP
xXP

x

l

lx

m  (3.1) 

3.1.1. Statistical measures for increment state occurs in one day length 

3.1.1.1. Average number of times happening of the increment state is  

 ( ).11
1
1 VPx=µ  (3.2) 

3.1.1.2. Standard deviation for increment state is 

 ( ) ( ) ( ) .1

213

2
11

21
11

1
1

2












µ−+µ=σ 

=l

xlx VPVP  (3.3) 

3.1.1.3. The third central moment for increment state is  

( ) ( ) ( ) .1
3

2
11

31
11

1
13
3












µ−+µ−=µ 

=l

xlx VPVP  (3.4) 
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3.1.1.4. Karl-Pearson’s coefficient of skewness for increment state is  

( ) ( ) ( )
23

2
11

31
11

1
11 1
3












µ−+µ−=β 

=l

xlx VPVP  

( ) ( ) ( ) .1

33

2
11

21
11

1
1
2

−

= 










µ−+µ× 

l

xlx VPVP  (3.5) 

3.1.1.5. Coefficient of kurtosis for increment state is  

( ) ( ) ( )











µ−+µ=β 

=

3

2
11

41
11

1
12 1

4

l

xlx VPVP  

( ) ( ) ( ) .1

23

2
11

21
11

1
1

2
−

= 










µ−+µ× 

l

xlx VPVP   (3.6) 

Similar lines follow for 

 (i) HMM for remain same state of length one. 

(ii) HMM for decrement state of length one. 

4. Probability Distribution for Two Days Sequence 

Let ( ) mX m =ω 2  be the random variable which denotes the happening 

of the state. 2mω  indicates three different states, namely increment state, 

remain same state, and decrement state, i.e., Im =ω 2  or R or D. ‘m’ be the 

number of times happening of the event in that particular state, ,2,1,0=m  

where ‘0’ represents non-happening of the state in two days length, ‘1’ 

represents happening of the state once in two days length, and 2 represents 

the happening of the state twice in two days length. 

Below notations are going to use in Subsection 4.1: 

( ) [ ( ) ]
= =

π=
3

1

3

1
1011 ;

i j

jijix baHVP  
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( ) [ ( ) ]
= =

π=
3

1

3

1
2021 ;

i j

jijix baHVP  

( ) ( )
3 3

1 3 0 3
1 1

[ ];x i ij j

i j

P V H a bπ
= =

=  

( ) [ ( ) ]
= =

π=
3

1

3

1
1112 ;

i j

jijix baHVP  

( ) [ ( ) ]
= =

π=
3

1

3

1
2122 ;

i j

jijix baHVP  

( ) [ ( ) ]
= =

π=
3

1

3

1
3132 .

i j

jijix baHVP  

4.1. Probability mass function for increment state occurs in two days 

length 

The probability mass function for increment state occurring in two days 

length is as follows:  

( )( )

( )

( ) ( ) ( ) ( )

( )
















=

=+

=














==ω

∏



∏ 

=

==

= =

.2;

,1;

,0;

2

1

1

3

2
211

3

2
112

2

1

3

2

2

xVP

xVPVPVPVP

xVP

xXP

m

xm

m

mxx

m

mxx

l m

mxl

m  

(4.1) 

4.1.1. Statistical measures for increment state occurs in two days length 

4.1.1.1. Average number of times happening of increment state is 

( ) ( ) ( ) ( ) ( ) .2
2

1

1

3

2
211

3

2
112

1
1 













+












+=µ ∏

=== m

xm

m

mxx

m

mxx VPVPVPVPVP  (4.2) 
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4.1.1.2. Standard deviation for increment state is  

( )































µ=σ ∏ 

= =

2

1

3

2

1
1

2

l m

mxl VP  

( ) ( ) ( ) ( ) ( )











+µ−+ 

==

3

2
211

3

2
112

21
11

m

mxx

m

mxx VPVPVPVP  

( ) ( ) .2

212

1

1
21

1



















µ−+ ∏

=m

xm VP  (4.3) 

4.1.1.3. The third central moment for increment state is  

( )

























µ−=µ ∏ 

= =

2

1

3

2

1
13
3

l m

mxl VP  

( ) ( ) ( ) ( ) ( )











+µ−+ 

==

3

2
211

3

2
112

31
11

m

mxx

m

mxx VPVPVPVP  

( ) ( ) .2
2

1

1
31

1 












µ−+ ∏

=m

xm VP  (4.4) 

4.1.1.4. Karl-Pearson’s coefficient of skewness for increment state is 

( )































µ−=β ∏ 

= =

2

1

3

2

1
11
3

l m

mxl VP  

( ) ( ) ( ) ( ) ( )











+µ−+ 

==

3

2
211

3

2
112

31
11

m

mxx

m

mxx VPVPVPVP  

( ) ( )
22

1

1
31

12



















µ−+ ∏

=m

xm VP ( )































µ ∏ 

= =

2

1

3

2

1
1
2

l m

mxl VP  
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( ) ( ) ( ) ( ) ( )











+µ−+ 

==

3

2
211

3

2
112

21
11

m

mxx

m

mxx VPVPVPVP  

( ) ( ) .2

32

1

1
21

1

−

= 


















µ−+ ∏

m

xm VP  (4.5) 

4.1.1.5. Coefficient of Kurtosis for increment state is 

( )































µ=β ∏ 

= =

2

1

3

2

1
12
4

l m

mxl VP  

( ) ( ) ( ) ( ) ( )











+µ−+ 

==

3

2
211

3

2
112

41
11

m

mxx

m

mxx VPVPVPVP  

( ) ( )



















µ−+ ∏

=

2

1

1
41

12

m

xm VP ( )































µ ∏ 

= =

2

1

3

2

1
1
2

l m

mxl VP  

( ) ( ) ( ) ( ) ( )











+µ−+ 

==

3

2
211

3

2
112

21
11

m

mxx

m

mxx VPVPVPVP  

( ) ( ) .2

22

1

1
21

1

−

= 


















µ−+ ∏

m

xm VP  (4.6) 

Similar lines follow for 

 (i) HMM for remain same state of length two. 

(ii) HMM for decrement state of length two. 

5. Estimating Expected Returns 

Expected returns are computed using the below formulas. 



Predictive Modeling for Share Closing Prices … 685 

5.1. Expected long-run returns 

The formula for computing long-run is 

.k
n

R B µ=µ  (5.1) 

Here ‘ Rµ ’ is the long-run returns, ‘ n
B ’ is the steady state probability, and 

‘ kµ ’ is the mean return of state ‘k’.  

5.1.1. Expected short-run returns 

The formula for computing short-run is 

.k
n

r B µ=µ  (5.2) 

Here ‘ rµ ’ is the short-run return, ‘ n
B ’ is the limiting probability, and ‘ kµ ’ 

is the mean return of state ‘k’. 

5.2. Prediction of share price 

The formula for predicting the share price is given below: 

 [ ] .1 tttt UUU +∆×=+  (5.3) 

Here, =+1tU  predicted value of the current day share price, =tU  value of 

the previous day share price, =∆t  difference between value of previous day 

share price and current day share price, i.e., .1 ttt UU −=∆ +  

5.3. Capital asset price model (CAPM) 

CAPM is a straightforward and effective tool used by investors to 

determine the systematic risk and expected returns of asset, money, share or 

other securities. In essence, the model explains how much compensation 

should be anticipated for taking a risk. 

The formula for computing the CAPM is 

 ( ).fmfr rrrE −β+=  (5.4) 

Here, ‘ rE ’ is the expected return of the share, ‘ fr ’ is the risk-free rate, ‘ β ’ 

is the risk measure, and ‘ mr ’ is the expected market return. 
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The high value of ‘ β ’ is indicating the risk of the stock. Hence, the 

investor expects more returns. If the value of ‘ β ’ is more than ‘1’, then it is 

an indication to the investor that his stock is in more risk than market risk. 

Hence, the investor can expect high returns. If the value of ‘ β ’ is less than 

‘1’, then it indicates that the investors stock risk is less compared to the 

market risk. Hence, the investor can expect low returns. The risk is directly 

proportional to the expected returns, i.e., Risk ( ) ( ).Returns rE∝β  

The market risk premium ( )fm rr −  is a term which describes the 

relation between expected market return and risk-free rate. 

6. Sensitivity Analyses 

In order to make use of the developed HMM, a real-time data on                 

closing prices of NSE and Wipro Company is considered. Data on closing 

prices of the stock market about 248 observations are collected for the  

period from 16th March 2021 to 15th March 2022 from the website 

http://in.finance.yahoo.com. Classification of the transient state in NSE has 

been carried out by using dividend ( ).tdx  State-G (hidden state-1) is 

considered if ,
n

dx x
xt

σ+µ≥  State-N (hidden state-2) is considered if 

,
n

dx
n

x
xt

x
x

σ+µ<<σ−µ  and State-F (hidden state-3) is considered if 

.
n

dx x
xt

σ−µ≤  Wipro’s dividend ( )tdy  is classified as the emission states 

by assuming State-I (emission state-1) is considered when ,
m

dy
y

yt

σ
+µ≥  

State-R (emission state-2) is considered when ,
m

dy
m

y
yt

y
y

σ
+µ<<

σ
−µ  

and State-D (emission state-3) is considered when .
m

dy
y

yt

σ
−µ≤  
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Figure 3. NSE’s classification of states. 

 

Figure 4. Wipro’s classification of states. 

Figures 3 and 4 exhibit the fluctuations of share values. They also 

exhibit the classifications of states of NSE and Wipro shares. It gives the 

indication to the investors and portfolio managers regarding the optimal time 

of selling and buying of the Wipro’s share. A detailed numerical illustration 

is provided in the next section. 
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The HMM parameters in ( )π=λ ,, BA  can be explored by the 

computing TPM, EPM/OPM, and IPV, through MS Excel and R 

Programming. Separate probability distributions are obtained for          

increment state, remain same state, and decrement state. Statistical 

characteristics/measures like mean, standard deviation, third central 

moments, Pearson’s coefficient of skewness and kurtosis etc. are obtained 

through derived mathematical expressions using the mentioned software. 

The capital asset price model (CAPM), and estimated expected returns are 

calculated using the literature. The goodness of fit of the developed model is 

tested by using chi-square test. 

6.1. Numerical illustration and results discussions 

6.1.1. Parameters of the HMM 

The explored parameters for HMM, i.e., ( )π=λ ,, BA  is as follows:  

,
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( ).445344.005668.0497976.0=π
FNG  

It shows that the NSE of the gain state has the highest likelihood with 

49.8%, fall state has second highest likelihood with 44.53%, and normal 

state has least likelihood with 5.67%. On average, it reveals that the state of 

gain state is having more advantages than remaining two states. It indicates 

that the market may boom in upcoming days. 
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6.1.2. Stationary matrix for TPM and EPM/OPM 

The stationarity will be achieved for TPM at 9th consecutive day and for 

EPM/OPM at 20th consecutive day. This is given below: 

,

443089.0056911.05.0

443089.0056911.05.0

443089.0056911.05.0
9
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The NSE gain state has highest likelihood with 50%, second highest is 

fall state with 44.31% and least likelihood is normal state with 5.7%. 

The Wipro’s share has the highest likelihood with a 50.45% possibility 

of being in decrement state, second highest likelihood with a 39.73% 

possibility of being in increment state and least likelihood with a 9.8% 

possibility of being in remain same state. Hence, it is suggested to purchase 

the Wipro’s shares on the 20th day to make good profits. 

6.1.3. Probability distribution for increment state 

Considering the above values, the probability distributions of the 

increment state sequences of one and two days length, observed with 

Wipro’s stock prices are provided below. 

Table 1. Probability distributions for increment state in one day and two 

days length 

P (increment) 0 1 2 

One day length 0.557954 0.442046 - 

Two days length 0.311256 0.493295 0.19545 

From Table 1, it is observed that happening of Wipro’s increment state 

is having less likelihood in one day sequence. Further, in a run of two days 
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sequence, the chance of increment in one day is more likely. Hence, it 

reveals that by observing two days business length, there is more chance for 

one day in two days run of observation. The required statistical measures for 

the probability mass function of increment state are presented in Table 2 to 

observe the nature of probability mass function. 

6.1.4. Statistical measures/characteristics for increment state 

Considering the above probability distribution values, the statistical 

measures of increment state sequence of one and two days length, observed 

with Wipro’s stock prices are provided below: 

Table 2. Statistical measure for increment state of one and two days length 

Statistical measure One day length Two days length 

Mean ( )1
1µ  0.442046 0.884194 

Standard deviation ( )σ  0.49663 0.702349 

Third central moment ( )3µ  0.028588 0.057126 

Skewness ( )1β  0.05447 0.027187 

Kurtosis ( )2β  1.05447 2.027187 

Coefficient of variation 112.348 79.4338 

Considering the above values, the probability distributions of the remain 

same state sequence of one and two days length, observed with Wipro’s 

stock prices are provided below. 

Table 3. Probability distributions for remain same state in one day and two 

days length 

P (remain same) 0 1 2 

One day length 0.898749 0.101251 - 

Two days length 0.807746 0.182002 0.010252 

From Table 3, it is observed that happening of Wipro’s remain same 

state is having less likelihood in one day sequence. Further, in a run of two 

days sequence, the chance of remain same state in non-happening of the state 

is more likely. Hence, it reveals that by observing two days business length, 
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there is more chance for non-happening, i.e., Wipro’s stock prices are not 

stable (dynamic). The required statistical measures for the probability mass 

function of remain same state is presented in Table 4 to observe the nature of 

probability mass function.  

6.1.6. Statistical measures/characteristics for remain same state 

Considering the above probability distribution values, the statistical 

measures of remain same state sequence of one and two days length, 

observed with Wipro’s stock prices are provided below. 

Table 4. Statistical measure for remain same state of one and two days 

length 

Statistical measure One day length Two days length 

Mean ( )1
1µ  0.101251 0.202507 

Standard deviation ( )σ  0.301661 0.426617 

Third central moment ( )3µ  0.072572 0.145146 

Skewness ( )1β  6.989108 3.49444 

Kurtosis ( )2β  7.989108 5.49444 

Coefficient of variation 297.9337 210.6682 

6.1.7. Probability distribution for decrement state 

Considering the above values, the probability distributions of the 

decrement state sequence of one and two days length, observed with Wipro’s 

stock prices are provided below: 

Table 5. Probability distributions for decrement state in one day and two 

days length 

P (decrement) 0 1 2 

One day length 0.543297 0.456703 - 

Two days length 0.29523 0.496241 0.208529 

From Table 5, it is observed that happening of Wipro’s decrement state 

is less likelihood in one day sequence. Further, in a run of two days 

sequence, the chance of decrement in one day is more likely. Hence, it 
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reveals that by observing two days business length, there is more chance for 

one day in two days run of observation. The required statistical measures for 

the probability mass function of decrement state are presented in Table 6 to 

observe the nature of probability mass function. 

6.1.8. Statistical measures/characteristics for decrement state 

Considering the above probability distribution values, the statistical 

measures of decrement state sequence of one and two days length, observed 

with Wipro’s stock prices, are provided below: 

Table 6. Statistical measure for decrement state of one and two days length 

Statistical measure One day length Two days length 

Mean ( )1
1µ  0.456703 0.913299 

Standard deviation ( )σ  0.498122 0.704444 

Third central moment ( )3µ  0.021486 0.043025 

Skewness ( )1β  0.030221 0.015148 

Kurtosis ( )2β  1.030221 2.015148 

Coefficient of variation 109.0691 77.13181 

6.2. Findings and recommendations 

From Tables 2, 4 and 6, it is observed that the one day sequences, 

decrement state occurs most frequently (0.456703), suggesting that it is 

favorable for short-term traders to buy shares for potential returns. In two 

day sequences, remain same state is less likely (0.202507) compared to 

increment and decrement states, indicating Wipro’s stock is dynamic, and 

investors should make informed decisions when investing. 

In one day sequences, increment and decrement states show            

higher volatility (0.49663 and 0.498122) compared to remain same state 

(0.301661). One day sequences are more consistent in remain same state, 

aiding traders in decision-making. For two days sequences, increment and 

decrement states exhibit higher volatility (0.702349 and 0.704444) compared 

to remain same state (0.426617). Two days sequences are more consistent in 
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remain same state, which helps investors make optimal decisions and 

manage their stock portfolios. 

Regarding skewness, the third central moments of the distributions of 

increment state, remain same state and the decrement state are non-negative. 

It reveals that all the states of one day trading possess positively skewed 

distribution. Similarly, the third central moments of all states in the two days 

length are non-negative, and hence it reveals that all the states of two days 

trading possess positively skewed distribution. 

In one day sequences, increment and decrement states have platykurtic 

distributions (kurtosis <  3), while remain same state has a leptokurtic 

distribution (kurtosis >  3). In two days sequences, remain same state likely 

follows a leptokurtic distribution (kurtosis >  3) as it is more peaked than the 

other two states. 

In one day sequences, remain same state shows high variability (C.V =  

297.9337), while decrement state has lower variability. This suggests 

potential for traders to consider buying Wipro’s stock for better returns. In 

two days sequences, similar trends are observed with remain same state 

having high variability (C.V =  210.6682) and decrement state showing 

lower variability. This also indicates an opportunity for traders to consider 

purchasing Wipro’s stock for potential returns. 

6.3. Expected returns 

The expected long and short-run returns computed utilizing the formula 

in Kilic [12]. The estimated long-run return is 0.000211317. The expected 

short-run returns results are presented in Tables 7-9. The following table 

presents the short-run expected returns for each state from 1=t  to 18=t  

when the returns move into steady state. 

Table 7. Expected short-run returns 

Day 1=t  2=t  3=t  4=t  5=t  6=t  

Increment 0.0078364 0.003577 0.00167 0.00084 0.000482423 0.0003281 

Remain same -0.003905 -0.00204 -0.000809 -0.00023 1.91921E-05 0.0001285 
State 

Decrement -0.005043 -0.00199 -0.000731 -0.00019 3.67639E-05 0.0001361 
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Table 8. Expected short-run returns 

Day 7=t  8=t  9=t  10=t  11=t  12=t  

Increment 0.000262 0.000233 0.000221 0.000215 0.000213 0.000212 

Remain same 0.000176 0.000196 0.000205 0.000208 0.00021 0.000211 
State 

Decrement 0.000179 0.000197 0.000205 0.000209 0.00021 0.000211 

Table 9. Expected short-run returns 

Day 13=t  14=t  15=t  16=t  17=t  18=t  

Increment 0.000214 0.000215 0.000213 0.000214 0.000212 0.000211 

Remain same 0.000212 0.000214 0.000211 0.000216 0.000218 0.000214 
State 

Decrement 0.000211 0.000211 0.000212 0.000211 0.000211 0.000215 

The risk premium of the CAPM obtained from the relation ( ),fm rr −  

where mr  is the average return of the market for the year estimated from the 

daily closing price of the Wipro’s stock exchange, and fr  is the average 

risk-free rate of return of the year, the yield on the government treasury bill 

which is relatively risk-free. The value of β  is 1~938211102.0 −  and 

expected return was found to be 0.006786667. It results that the Wipro’s 

share expected risk is proportional to the market risk. Thus the investor may 

expect and get the optimal returns by investing on Wipro’s stock. 

6.4. Predicted stock values 

The share values of Wipro Company are predicted by using equation 5.4 

placed in Subsection 5.3. The predicted share values of a company will be 

helpful to the short-term traders. The predicted share value may answer the 

questions like (i) what is stock value in the increment state on the 249th day? 

(ii) what is the stock value in the remain same state on 249th day? And also 

(iii) what is the stock value in decrement state on 249th day? Tables 10-12 

represent the predicted values of the Wipro’s share prices. 

Table 10. Predicted stock values 

Day 249th day 250th day 251st day 252nd day 253rd day 254th day 

Increment 592.3055 594.42433 595.4169 595.9173 596.2048 596.4004 

Remain same 585.4052 584.21129 583.7388 583.6026 583.6138 583.6888 
State 

Decrement 584.736 583.57131 583.1445 583.0313 583.0528 583.1321 
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Table 11. Predicted stock values 

Day 255th day 256th day 257th day 258th day 259th day 260th day 

Increment 596.5565 596.6955 596.8271 596.9556 597.0828 597.2094 

Remain same 583.7913 583.9057 584.0252 584.147 584.2697 584.3928 
State 

Decrement 583.2365 583.3516 583.4714 583.5931 583.7158 583.8389 

Table 12. Predicted stock values 

Day 261st day 262nd day 263rd day 264th day 265th day 266th day 

Increment 597.3357 597.462 597.5883 597.7146 597.8409 597.9673 

Remain same 584.5163 584.6397 584.7633 584.8868 585.0104 585.134 
State 

Decrement 583.9622 584.0855 584.2089 584.3324 584.4559 584.5794 

The above results may helpful to the investors like short-term business 

traders and portfolio managers. If the traders share is in risk, they may take 

some remedial measure to optimize their stock without loss. 

6.5. Chi-square goodness of fit 

The developed probability distribution model on goodness of fit is 

verified through chi-square test. Here, H0: there is no significance difference 

between observed and expected closing prices, H1: there is significance 

difference between observed and expected closing prices. The 2χ  critical 

value is considered at 5% level of significance. The chi-square test statistic 

value is 9.625781033 and chi-square table value at 17 degrees of freedom           

is 27.587. Since ,2
 valuecritical

2
statistictest χ<χ  it is observed that the null 

hypothesis cannot be rejected and the fitted model is good enough. 

7. Conclusion 

The current research work is on developing HMM for daily closing price 

of the NSE and Wipro Company. The transition states of NSE are considered 

as hidden state influencing the observed states of Wipro Company. The 

parameters of HMM like IPV, TPM, and OPM/EPM are obtained by 

assuming the discrete Markov chains within hidden states and between 

hidden to observed states, respectively. This study has formulated the 
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different probability distributions for increment, remain same, and 

decrement states. Model behaviour of all states is explored through the 

explicit mathematical relations of different statistical characteristics and 

Pearson’s coefficients, presented in Sections 3 and 4. Sensitivity analysis is 

carried out through the real-time data sets of NSE and Wipro Company for 

understanding the characteristic of the developed model, which is presented 

in Subsections 6.1 and 6.2. These results will be useful for short-term 

business investors for finding the indicators of when to sell and when to 

purchase the share of Wipro Company by observing the chance of its 

emission states. The results mentioned in Subsection 6.3 show that the 

overall average of returns of the stock (0.000211317) will be realized in the 

long-run (after 20th day). The predicted share values of Wipro Company are 

presented in Tables 10-12 in Subsection 6.4, these results may give a good 

indication to the traders for optimizing their share by choosing the options of 

selling/purchasing. 
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