












Preface

Studies on biological concepts with mathematical approaches are the current trend for

proper understanding of various disease related problems. Formulation of mathematical

relations with relevant assumptions on pathophysiological issues will provide sound

theoretical support for measuring different parameters of health disorders. Quantification of

qualitative characteristics of diseases with mathematical methods becomes a revolution in

almost all disciplines. It leads to make mathematical biology become a frontline discipline.

Assessment of the severity of disease through clinical methods is a nonparametric approach,

which gives much ambiguity in measuring its intensity.  

Mathematical study for measuring the tumor growth was pioneered by Mayneord (1932).

It has initiated much attention to develop many models for cancer cell growth. Biological

and mathematical assumptions have explained and analyzed the kinetics of tumor growth.

Modeling of tumor growth has gained the importance due to the scope of its uses in optimal

drug administration. This study has modeled the tumor growth with the notion of

spontaneous mutation and proliferation of cells with heterogeneity and stochastic behaviour.

The study has three domains namely (1) development of stochastic model under

heterogeneous time dependent Poisson processes (2) Development of stochastic models for

cancer related cell growth under the drug administration and drug recovery periods, (3)

Development of stochastic optimization programming problem for effective and optimal drug

administration by keeping the stable health of the patient.

This study is organized in five chapters. The overview and literature review on

Mathematical, Stochastic and Optimization models was presented in the first chapter.

Developed stochastic model includes differential equations, probability function, statistical

measures with first and second order moments and sensitivity analysis for cancer growth

with spontaneous mutation/proliferation; along with the extension model for cancer growth

during drug administration/drug vacation periods are presented in the second chapter.   A two

stage stochastic model for mutant cell growth with an assumption of growth/loss processes of

cancer cell is a combination of growth/loss of premalignant and malignant cells is presented

in chapter three.  

  



A similar model during chemotherapy is presented along with the sensitivity analysis is

presented in the same chapter as an extension. Optimization problems for cancer

chemotherapy are developed through stochastic programming in chapter four. The decision

parameters like arrival/death rates of mutant/normal cells are estimated through the

developed problem. The optimality of drug effectiveness is studied and analyzed through a

suitable data. An objective function for maximizing the drug effectiveness is formulated by

considering various inputs like intensity of drug dose, times of drug administration, times of

drug vacation, cycle lengths of drug administration and drug vacation, loss of WBC and

expected number of existing premalignant and malignant cells etc. Constraints are also

formulated by considering upper and lower desired limits of premalignant cells, malignant

cells, WBC etc.   Chapter five is concluded with summary and research findings.

The study has concentrated mostly on stochastic modeling of cancer cell growth for

normal and mutant cells, two stage mutant cell growth in general environment as well as

chemotherapy environments. While developing stochastic programming problem for

optional drug administration, the expected number of normal and mutant cells, expected

number of premalignant and malignant cells are estimated through the method of moments.

This work is categorized as theoretical development through which the cancer cell growth

can be understood on mathematical lines. These models will be more useful for applied

scientists working in health care industry.  As the complexity of the model and its relevance

to the real life data, cumbersome and heavy calculations require the attention of computer

technologists to prepare suitable software.  User friendly computer automation can also be

developed by combining the developed mathematical models and suitable computer

programs.
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Chapter 1

Stochastic Modeling, Optimization Programming of Cancer
Growth and it Treatment with Chemotherapy   

  
1.1. Introduction:

Mathematical Biology becomes the buzzword to study the biological issues with

mathematical approach. It is also useful for making the mathematical endeavors in

understanding the disease patterns. Assessment of the disease severity through

clinical methods is a nonparametric approach, which has a scope for much ambiguity

in assessment of disease behaviour. Researchers are making many efforts in

quantifying the qualitative traits for measuring the eventual phenomena. Modeling

the genetical issues and Pathophysiology of the cancer cell growth through

mathematical techniques has att5racted the attention of the multi disciplinary

approaches with Biologists and Mathematicians, Statisticians, Computing Experts. 

This study has dedicated to modeling the biological aspects cancer disease with

mathematical approaches. The stochastic processes involved in growth and loss of

cancer cells are obtained through suitable assumptions and postulates. The study has

divided in to three phases. In the first phase, the stochastic models for growth of

cancer are developed. The statistical measures like average number of normal cells,

average number of mutant cells, Variances of Normal and mutant cells, Covariance

between number of Normal and mutant cells are derived through the developed

model. In the second phase, the cancer growth model during the chemotherapy is

derived. The statistical measures as mentioned in the first phase were derived. In

third phase, an optimization programming problem was developed with the derived

relations in the first and second phases. Simulated data sets were considered to

make the sensitivity analysis for all the three developed models.

1.2: Pathophysiology of Cancer

Cancer is described as group of diseases in which the process of uncontrolled growth

and spread of cells. It is not a specific disease; it is a combination of several tissue

and muscle responses that result in uncontrolled cell growth. Healthy tissues are

composed of cells having the specific structure and behave with genetical

instructions. Whereas cancer cells differ from normal cells in size, structure, 



function, and growth rate as result of mutant behaviour of genetical instructions.

They lack the normal controls of growth seen in healthy cells, and grow

uncontrollably. The continuous and uninterrupted cell division leads to invading of

cancer cells to adjacent structures and makes disordered cell growth in the

surrounding tissues and organs. Malignant cells may also metastasize to other areas

of the body through the lymphatic systems. The spread and invasion of cancer

causing cells eventually effects the normal functions of some vital organs leads to

nonfunctioning of the effected organ.

Malignant cells will lose their ability to differentiate from normal and healthy cells.

Dysplasia is a general category that indicates a disorganization of cells. The cells

vary from its normal parent cell in size and shape. Metaplasia is the first level of

dysplasia (early dysplasia) which is a reversible, benign, but abnormal change seen

when a cell changes from one type to another. Anaplasia is the loss of cellular

differentiation.  It is the most advanced form of metaplasia and is a defining

characteristic of malignant cells. Hyperplasia refers to an increase in the number of

cells in a tissue or in a part of a tissue results in increased cell mass. It can be a

normal consequence of certain physiologic alterations or it can be a sign of

malignancy. A Neoplastic Hyperplasia is responsible for an abnormal increase in cell

mass due to tumor formation.   

There are also considerable differences in the growth rates of malignant tumors.

Some tumors are very slow-growing, even in a malignant state; some may grow

slowly at initial stage and they grow at a rapid pace later; some may grow very

rapidly throughout their entire existence. Understanding the causes of cancer is a

complex as it is due to many factors, such as environmental exposures, lifestyle

practices, medical interventions, genetic traits, viruses, familial susceptibility, etc. It

may be the result of interactions between repeated carcinogenic exposures and an

individual's susceptibility to the disease.   There are several factors that influence

tumor growth may attributed to type of the organ on which the cancer is formed,

gender of the patient, individual immunity capabilities, growth and loss rates of

cancer cells, rate of tumor formation, number of active tumor cells, rate of normal

cell growth, etc.  Cancer used suppresses the immune system during in early and

later stages of the disease.  Oncogenes are categorized as mutated genes and they are



responsible for uncontrolled growth in cells. More often, cellular growth rates are

regulated by proteins produced by the genetic material and it can be altered or

mutated by environmental factors, errors in genetic replication, repair processes, 

tumor viruses, etc.

An irregular and continuous cell division beyond the control of regulating

mechanism of body system may be referred as cancer. Usually the growth of cell

population is controlled and regulated by allele of a gene. The human body system

used to repair or construct the cells as per the requirement and alternative

compensation of lost cells. Continuous proliferation of a cell in a tissue leads to

formulation of tumors and the metastasis which leads to formulation of secondary

liasons and may spread through blood circulation via lymphatic system. It is a result

of uncontrolled cell growth.   

It is customary to assess the severity of the cancer problem through conventional

procedures like measuring the volume of tumor through scanning, Bio markers, 

analyzing biopsy etc. There are many models through which the cancer growth can

be studied such as mathematical, statistical, computational, deterministic and

stochastic models. Mathematical models may accommodate the hypothetical

assumption where the growth and loss rates are deterministic and certain. In fact the

cause of cancer growth cannot be attributed to a single reason. There may be million

and odd reasons and factors that influence the growth of cancer and hence the cancer

cell growth is considered to be influenced by several random and chance causes.

Stochastic models used to provide the basic frame work for understanding and

analyzing the natural phenomena behind the cancer growth. A tumor is defined as a

mass of tissues formed as a result of inappropriate and excessive proliferation of

cells. The complexity in understanding and measuring the tumor growth made it

necessary to formulate and integrate the classical mathematical and the real life

statistical models. Describing the growth of tumor at different levels is possible only

when the construction of the model is rational. In practice uncertainty prevails

everywhere in various aspects of tumor growth. Hence stochastic modeling will be

the suitable option for formulating the cancer growth.



1.3. Mathematical Biology for Cancer Studies:

Cancer is a disease to be handled with mathematical modeling rather than clinical

trials for assessing the severity of the disease.  The phenomena of frequent clinical

screening become tedious and impossible due to the complexity involved in the

study. This research is a combination of mathematical modeling, mechanics and

scientific computing applied to the domain areas of disease based on the assumptions

of Pathophysiology.  It is the exercise of making use of Mathematics, Computing

techniques, Optimization methods to resolve the nonmathematical problem at hand.  

Stochasticity principles to biological problems play an important role in biological

processes. Cancer studies with mathematical modeling deals with formulation of

relational functions of cellular division, the movement and growth of single cells and

soft tissues. These models are meant for understanding the growth and movement

based on principles of deformable body mechanics.

Traditionally, biology has been considered to be an experimental science in which

mainly qualitative observations are important. Over the last one to two decades, the

need for quantitative analysis in biological fields has significantly increased. There

are two major reasons for the said. The former is, a biological experiment can

address one small aspect of a much larger and more complex process and the later

require manipulation of mechanical properties on a cellular level, are extremely

difficult to perform. Simulations based on mathematical models can provide insight

as to what might happen in a biological system on which an experiment cannot be

done. Mathematical models aimed to understand the interplay between the

biochemistry and mechanics involved.  These models can describe the effect of

mechanical stresses on growing tumor.  

With Mayneord (1932) pioneering work on mathematical study for measuring the

tumor growth, several authors have developed various cancer cell growth models

with different assumptions. Those works have explained and analyzed the kinetics of

tumor growth. Modeling of tumor growth has gained the importance due to the scope

of its uses in optimal drug administration. The growth and loss rates of both normal

and mutant cells are considered to be random variables due to the influence of

innumerable reasons. Conventional method of modeling the tumor growth through

mathematical means in the assumption of deterministic situation has shifted its



paradigm to stochastic modeling. Time dependency is an essential consideration

while observing the dynamics of tumor growth. The vital factors of tumor growth

process are spontaneous mutation, proliferation, growth and loss of the cells etc. 

Modeling cancer growth in a single environment has lost its significance and hence

there is a need of constructing it with heterogeneous environments. The behaviour of

growth and loss patterns of both normal and mutant cells has to be modeled with

stochasticity.  

In this chapter a detailed review is presented on various mathematical models,

stochastic models and also on computational models. The literature review is also

extended on modeling aspects of stochastic optimization problem formulation used

in cancer chemotherapy. 

1.4. Models on Cancer Growth and Treatment:

In this section, a brief review was carried for cancer growth & loss processes along

with its treatment using chemotherapy. The focus is made on three broad categories

of literature namely mathematical models, stochastic models and optimization

models of cancer growth as well as its treatment.

1.4.1 Mathematical Models:

Mayneord (1932) pioneered the study on growth of the tumor in volume through the

application of a differential equations model for the rat sarcoma. Rashevsky (1945)

developed the mathematical models involving differential equations that deal with

the dynamic or time course variation of the cancer. Arley et al. (1952) developed a

model based on one stage  mutation hypothesis . The dose response relation in any

one series characteristics by a fixed time pattern was fitted by this model. Kendall

(1952) has developed a quantitative model for carcinogenesis based on phenotypical

delayed mutation. Armitage et al. (1957) developed a model   for two stage theory of

carcinogenesis in relation to the age distribution of human cancer. This model is

characterized by a deterministic assumption that the clone of first order mutants

grow in exponential form.

Kendall (1960) investigated the biological situation of cell growth as a birth and

death model considering a large population of normal cells subject to carcinogenic

action. The carcinogenic action was categorized in to four states. He assumed that

the birth and death rates are constants.



Laird (1964) discussed the dynamics of growth of a tumor using Gompertz law. 

Burton (1966) studied the growth rate of solid tumors as a diffusion process.

Neyman et al. (1967) used a linear birth and death process to describe tumor growth.

They considered that the probabilities of birth and death are constant and hence it is

also density dependent. Simpson et al. (1970) investigated the experimental tumor

system with cell kinetics and growth curves. They have computed the time required

for tumor to pass the initial size referred as the first passage-time formula.  

Sullivan et.al (1972) described the kinetics of tumor growth and regression relation

in Ig. G multiple myolema through Gompertz law. Steel (1977) studied various

growth kinetics of tumor through the logistic model and demonstrated the

applicability of Gompertz growth law of tumor growth. Swan ((1977) reviewed

various mathematical models regarding the tumors. He described a method for

Schwartz (1978) developed a

mathematical model for breast cancer to evaluate the benefits of screening for breast

cancer, the hypothesis concerning the age-specific incidence of the disease was

considered. The rate of disease progression, the tendency of the disease, etc, were

studied.

Hanson et al. (1981) derived an asymptotic approximation to the first passage time

problem for singular diffusion population. They have obtained a solution for density

dependent stochastic population. Atkinson (1983) studied the growth rate of a

cancerous tumor as a function of its age. An estimator for the growth function from

data on size at detection is obtained and applied to data on large series of cases of

breast cancer, which indicates that the growth function can be adequately described

by exponential growth. Coldman et al. (1983) developed a mathematical model of

tumor resistance to chemotherapy. The probability of no resistant cell is utilized as a

fundamental quality of interest, and the effects of various therapeutic strategies on it

are explored. After observing the application of various drugs, it was inferred that it

is optimal where it is permissible. Steven et al. (1983) described a mathematical

model of growth based on the kinetics of cell cycle. Intrinsic growth rate equations

were derived and behaviour of model was characterized based on animal tumor cell

cycle kinetics data.  

Birkhead et al. (1984) studied a mathematical model relating tumor response under

repeated doses of a single cytotoxic agent to the presence and accumulation of



phenotypic drug resistance. They have presented an analytic expression for

quantities like the fractional tumor reduction effected by dose, the minimum tumor

size achieved under therapy etc. Forbes et al. (1984) reviewed various mathematical

models of carcinogenesis with certain biological assumptions. Kendall (1984)

developed a model which relates the growth of tumors to the degree of their cellular

heterogeneity. The growth rate is proportional to the logarithms of the number of

combinations of states and is inversely proportional to the total number of inter

cellular interactions whe

Marco et al. (1984) developed a mathematical model, which consists of a system of

first order partial differential equations. They investigated the evolution of a

homogeneous cell population under the action of mutagenic agents. Adam. J.A.

(1986) developed a one-dimensional model of tumor tissue growth in which the

source of mitotic inhibitor is non-uniformly distributed within the tissue. Jackson

(1986) reviewed some applications of kinetic simulation of multi enzyme networks

to the study of anti metabolic drugs used as anticancer agents; Kinetic models

consist of system of nonlinear differential equations which describe changes in

concentrations of cellular metabolites with respect to time. Drug sensitivity, drug

resistance and drug   intervals were estimated with the above networks. Marek et al.

(1986) described a mathematical model to estimate the cell cycle phase specific

action of a new anticancer drug CI-921. The estimate obtained is in the form of a

sequence of fraction of the cell flow blocked in successive sub compartments of the

cell cycle.

Kinsella, A. (1987) fitted a linear multiple regression model to a tumor time series.

The slope parameters are used to estimate the expected life time extension/reduction

as an unambiguous index of treatment effects. Dinse (1988) described a regression

analysis that adjust for survival and allows different conditional death rates. The

methods proposed, provide a  frame work for incorporating covariates as well as

EDOI study. 

Adam et al. (1989) studied two mathematical models for the control of the growth of

a tumor by diffusion of mitotic inhibitor. The inhibitor production rate is taken to be

uniform in necrotic core for the first model and in the non- necrotic region for the

second model. Regions of stable and unstable growths are determined and



conclusions are drawn about the limiting peripheral widths of stable tissue growth

for both models. Dewanji et al. (1989) developed mathematical expressions for the

number and size distribution of intermediate regions. He defined a type-I

premalignant cells as one that has arisen by direct mutation from one of the normal

cells descended from a single type-I premalignant cell, not counting the dead or

differentiated cells. Murray (1990) investigated some models of cancer

chemotherapy problems where the normal cell population must be maintained above

a lower limit and a measure of total drug used is bounded as a limit of toxicity. 

Dewanji et al. (1991) developed two-mutation model for carcinogenesis which

postulated two-state limiting events for malignant transformation as a generalization

of the recessive ontogenesis hypothesis. As per this model, inactivation of

homogeneous tumor suppresser genes leads to cancer. This model has been used for

the analysis of altered hepatic foci in rodents. Martin (1992) investigated three types

of tumor growth models namely Gompertz, Logistic and Exponential. They observed

that the tumor burden therapy have a little impact on survival time for exponential

and logistic growth tumors. Tusnady (1992) discussed various mathematical

methods of cancer research as (i) understanding the description of processes leading

to cancer such as investigation of  non- ergodic sequence of stochastic  automate (ii)

diagnostic methods for steaming the growth factors by algorithms and (iii) follow

up studies using the Kelpan-Meier estimator  and Cox regression for one

dimensional and multi-dimensional survival distributions. 

Dewanji et al (1993) developed a new method of estimating  tumorigenic  potency

that takes into account information on survival and cause of death .They described

the time to tumor occurrence(X), the time to death as a result of tumor occurrence

(Y) and the time to death from cause other  than tumor occurrence (Z) through the

Weibull distribution. Biswas et al. (1994) measured the relative risks and longevity

of a group of cancer patients using Weibull model whose parameters are the

functions of the covariates based on randomly censored data. Mathisca et al (1994)

developed a mathematical theory based on a two-mutation model for carcinogenesis,

which is used for the quantitative analysis of premalignant clones induced by

specific carcinogenesis.  

Carriere (1995) studied an identifiability theorem in the theory of dependent

competing risks. He has discussed the modeling of dependence with copila function



and he has also calculated the survival probabilities after cancer is removed by

solving a system of non linear differential equations. Miklavcic et al. (1995)

developed a mathematical model in which the pharmacokinetic model was extended

and transformed to the level of macroscopic biologically detectable effect. They

have used Gompertz equation for modeling. The effect of bleomycin on tumor

growth was obtained by introducing the influential parameters. Morell et al. (1995)

used a nonlinear mixed effects model to describe longitudinal changes   in   prostate

specific antigen (PSA) in men before their prostate cancer were detected clinically

through a piece wise model. The time at which the PSA levels change from non-

linear to exponential could be estimated including random terms that allow each

subject to have his own transition time.  

Little et al. (1996) fitted a two mutation carcinogenesis model of Moolgavkar, 

Venzon & Knudson and generalized to lymphatic leukemia incidence data. Both

Acute and Lymphatic Leukemia were fitted by the model of mutation. These two

mutation models are such that first mutation rate and the susceptible stem cell

population vary rapidly with age. Xu et al. (1998) developed a model by making the

hazard function for detecting a metastatic cancer a constant. Two quantities were

considered to study the relationship between the size of primary cancers and the

occurrence of metastases, they are (i) the distribution of tumor size at the point of

metastatic transition, and (ii) the probability that detectable metastases are present

when cancer comes to medical attention. They have proposed an estimator of the

tumor size distribution at metastases and the result is applied to a set of colorectal

cancer data.

De Pillis, L.G. and Radunskaya, A. (2000) presented a competition model of cancer

tumor growth that includes both the immune system response and drug therapy. It is

a four-population model that includes tumor cells, host cells, immune cells and drug

interaction. Using optimal control therapy with constraints and numerical

simulations they obtained new therapy protocols and then they compared with

traditional pulsed periodic treatment. Roberto Serra and Marco Villani (2001)

discussed differential equations and cellular automata models of the growth of cell

cultures and transformation foci.

Bao-Quan ai et al. (2003) studied tumor cell growth model in the presence of

correlated additive and multiplicative noise, and showed that the noise correlation



can dynamically cause the tumor cell extension. Francis D. Alfano (2006) model

gave a quantitative assessment of the amount of cellular death or growth inhibition

that result from the ablation of an Onco protein product. Mikhail

Blogosklonny et al. (2006) reviewed a complete parametric analysis of dynamic

regimes of a conceptual model of anti-tumor virus therapy. The role and limitations

of mass action kinetics are discussed. They showed that in a certain area of

parameter values, the trajectories of the model form a family of homo clinics to the

origin.

Anderson A.R.A. et al. (2007) have presented three different multi scale individual -

cell-based models, each motivated by cancer-related problems emerging from each

of the spatial scales, extracellular, cellular or sub cellular, but also incorporating

relevant information from other levels. Tinna Roose et al. (2007) have given a brief

review on mathematical models describing the growth of avascular tumors. Monika

Joanna Piotrowska et al. (2008) discussed an overview of different mathematical and

numerical approaches to describe stem cell proliferation, differentiation and the

development of small cancer stem cell populations that are origins of neoplasm

disease. 

Christophe Deroulers et al. (2009) reviewed the modeling of tumor cell migration

from microscopic to macroscopic models. They showed that a diffusion equation

arises, as is often postulated in the field of glioma modeling, but it is nonlinear

because of the interaction. They gave the explicit dependence of diffusivity on the

cell density and on a parameter governing cell to cell interactions. They noticed that

the families of microscopic models were started from some kinetically constrained

models that were introduced for the study of the physics of gases super cooled

liquids and jamming systems.

1.4.2 Stochastic Models:

Iverson et al. (1950) studied the mechanism of experimental carcinogenesis. The

probability distribution of latent period, the lethality of allied carcinogenesis etc.

were estimated through the stochastic theory. Neyman (1958) discussed the

biological situations of cell growth as a stochastic model and phonotypical delayed

mutation process for a quantitative theory of carcinogenesis. Armitage et al. (1961)

developed a stochastic model for carcinogenesis and reviewed various mathematical



models, which discussed the induction period of carcinogenesis and transition

probability density per unit time for each tissue.

Wette et al. (1974) developed a stochastic model for growth of solid tumors based on

physical characteristics of the tumor. This model leads to density dependent

stochastic process for the mean size of the tumor. Dubin (1976) formulated a density

dependent birth and death process to describe tumor growth subject to

immunological response. The density dependence is due to a non-linear factor in the

model is similar to the logistic growth law.

Bartoszynski (1981) developed a model on the appearance times of metastases as a

non-stationary Poisson process and developed algorithm using probability density

estimation, mortality measurements and discrete maximum penalized likelihood

approach. Hanson et al. (1982) derived a stochastic model for tumor growth based

on diffusion approximation of continuous time and density dependent branching

process with a Gompertz law as the deterministic part.

Chiang (1983) discussed the theory of multistage carcinogenesis with a time

dependent stochastic model. He derived the distribution of the time required for a

given number of mutations and the probability of developing neoplastic cells in a

given interval of time. Serio (1984) studied a two-stage stochastic model for

carcinogenesis with time-dependent parameters. This model is viewed also as a

generalization of the model of Moolgavkar and Venzon (1979) for the adult tumors.

Coldman et al. (1985) studied a stem cell compartment model to simulate the growth

of human tumors, which is used to explore the effects of cell differentiation and loss

on the development of spontaneous drug resistance. According to them, the

probability that the resistant cell is independent of rate of cellular differentiation for

one drug and the probability that the cell resistance is proportional to the rate of

cellular differentiation for more than one drug. Hiep (1985) derived a stochastic

model of evolution of mutant sub populations from stem cells in human tumor

system. The growth of mutants (both stem cell mutants and overall mutation) due to

mutation of tumor stem cell during growth is explored. This model relates the mutant

stem cells and overall tumor mutant cell population sizes.



Jushua, C. et al. (1985) compared two types of stochastic models for the initial

growth of cancerous tumors. In the first type, the random element enters via the

initial time of growth (or) via the initial size of the growth of clone, whereas in

second type tumor differ from one another essentially via these growth rates. Kranz

(1985) studied the effects of demographic and environmental stochasticity on the

qualitative behaviour of mathematical model from tumor immunology. A stochastic

differential equation whose solution is a limiting diffusion process to a branching

process with random environment is used. Tan et al. (1985) derived the probability

distribution for the number of tumors and the incidence rates the experiments using

two-stage model, when an individual is continuously exposed to environmental

agents of cancer.

Birkhead (1986) derived the transient solution of the simple linear birth and death

process subject to random mutation. He investigated the curability of cancer under

drug treatment through this solution. He also derived the expression relating to

curability of the disease to increasing tumor size. Coldman et al. (1986) presented a

stochastic model for the chemotherapy of experimental tumors. They have derived

the equations for the joint probability generating function for the number of chemo-

sensitive and chemo-resistant cells. This model is extended to two drugs and they

have shown how the model can be used to make deduction regarding the optimum

scheduling of therapy. 

Flehinger et al. (1987) developed a mathematical model of progression kinetics of

lung cancer in a periodically screened population. They assumed that the

development of adenocarcinoma of lung is a stochastic process with two stages, say

early stage and advanced stage. Various parameters like mean times, detection

probabilities, confidence region etc. were also estimated. Moolgavkar et al. (1988)

described the evolution of malignant cells in the tissue and those malignant cells that

arise from direct mutation from premalignant cells. Premalignant cells are generated

from normal cells as a non homogeneous   Poisson process which ignores birth and

death of malignant cells.

Abundo, M. et al. (1989) developed a stochastic model to study the problem of

inherent resistance by cell population. They have introduced stochastic differential

and numerically integrated methods to simulate expected response to the

chemotherapeutic strategies as a function of different parameters. Chaing et al.



(1989) studied a stochastic model of survival distribution, where the mortality

intensity is a fu

exposure to toxin absorbed. They have given the formulae for the density function,

the distribution function and expectation of life time.

Michelson et al. (1989) developed a stochastic analogue to a deterministic model

describing sub population emergence in heterogeneous tumors. They have also

described a finite element approach for the numerical solution to the Flokker-plank

or forward kolmogorov equation. The results of the simulation supported the

stochastic model, as the basic dynamic of its deterministic counterpart. Tan et al.

(1989) developed a non-homogeneous stochastic model for drug resistant cells with

immune stimulation. The probability of distribution of the number of  resistant tumor

cells, the probability of nonresistant cells, the expected value and cumulates of the

number of resistant tumor cells are derived.

Duffy et al. (1995) developed a two parameter markov chain model to explicitly

estimate the preclinical incidence rate ( 1) and the rate of transition from preclinical

2). They have also proposed an estimate of sensitivity based on the

estimated parameters of the markov process. Jain et al. (1995) developed a stochastic

model for one, two and three stage malignant transformation for embryonic and

adult mice to study the influence of mutation rate, number of stages required for

transformations and number of stem cells at risk on the kinetics of spontaneous

appearance of malignant tumors.

Hanin et al. (1997) discussed the distribution of tumor size at detection derived

within the frame work of a stochastic model of carcinogenesis. They have

considered two versions of the model with reference to (i) spontaneous and (ii)

induced carcinogenesis having the asymptotic behaviour. Alexander et al. (1997)

developed a stochastic model of spontaneous carcinogenesis to allow for a simple

pattern of tumor growth kinetics. They have discussed a method of estimating

numerical characteristics of unobservable stage of carcinogenesis from data on

tumor size at detection.

Chen et al. (1998) considered a stochastic model with exponential components to

describe the phase-III cancer clinical trials data. They presented the relationship

between the hazard ratio of disease free survival (DFS) for an active treatment versus



a control treatment and the cumulative hazard ration of survival for the same two

treatments. Zheng (1998a, 1998b) suggested a method to compute the hazard

function for the multistage carcinogenesis model based on the Kolmogorov forward

equation: It highlights the interplay of the forward equation and the backward

characteristic methods. He also discussed the advantages and disadvantages of the

forward and backward equations. He also reports that as far as the survival and

hazard functions are concerned, all three models given by detectable when its size

attain some threshold level which treated as a random variable. The model yields a

parametric family of joint distribution of tumor size and age at detection.

Andrew J. Coldman and J. M. Murray (2000) extended a stochastic model of

chemotherapy for cancer to incorporate its concomitant effect on the normal system

and derived overall measures of outcome. The model includes the development of

drug resistance and is sufficiently flexible to include a variety of tumor and normal

system growth functions. The model is able to mimic the data and provides a

description of the optimal regimen. Marek Kimmel and Olga Y. Gorlova (2003)

proposed a stochastic model of lung cancer risk and progression. The genetic and

behavioural determinants of susceptibility are the essential elements of the model.

The mortality reduction caused by early-detection and intervention programs can be

predicted under different scenarios through the model estimates as a foundation.  

L. Ferrante et al. (2004) considered Gompertz Model with a stochastic version in

vivo tumor growth and its sensitivity to treatment with antiangiogenic drugs. An

explicit likelihood function is defined. Some properties of the maximum likelihood

estimator for the intrinsic growth of the stochastic Gompertzian model are discussed.

Rao, P.T and Rao K.S. (2004a, 2004b, 2004c) studied a stochastic model for cancer

cell growth under chemotherapy, with spontaneous mutation and proliferation,

mutant cell growth with inactivation of allele genes etc.

Anna Ochab-Marcinek (2005) investigated noise-induced pattern formation in a

model of cancer growth based on Michaelis Menten Kinetics, subject to additive and

multiplicative noises. Artam et al. (2006) reviewed applications of the birth and

death process theory in biological and evolutionary genomics. N. Komarova (2006)

formulated and analysed a stochastic model for multi-drug resistance and

investigated the treatment outcomes on initial tumor load, mutation rates and the

turnover rates of cancer cells.



R. Horhat et al. (2006) developed a simulation of a stochastic model for tumor

immunization using wiener process. Artem S. Novozhilov et al. (2006) discussed the

applications of the theory of birth and death processes to problems in biology, 

primarily those of evolutionary genomics. Rinaldo B. Schinazi (2006) proposed a

simple stochastic model based on the two successive mutations hypothesis to

compute cancer risks. Rao, P.T and Rao K.S. (2006) studied a two stage stochastic

model for cancer cell growth.

Chignola et al. (2008) have considered a stochastic model on proliferation and death

of cell as eco system in a binary environment. Christine et al. (2008) reported a

stochastic model for cancer stem cell origin in metastatic colon cancer. R. Chignola

et.al (2008) considered a general stochastic model of the interplay between cells and

environmental cellular niches. The model reduces to a set of four non-linear

differential equations. The analysis of a stochastic model of its deterministic limit

and a normal fluctuations is provided. C.F.Lo (2009) developed a stochastic

nonlinear Gompertz model of tumor growth for size dependent therapy strategy of

tumors. He proposed a stochastic non-linear model of tumor growth based upon the

deterministic Gompertz growth law, and also considered the conventional size-

dependent therapy strategy of tumors. Wen Juan Mo etal. (2009) studied a gene pair

co-expression change by using stochastic process model for approximating the

underlying dynamic procedure of the co-expression change during cancer

progression.

Craig J. Thalhauser et al. (2010) studied the selection dynamics in a heterogeneous

spatial colony of cells. They used two spatial generalizations of the Moran process, 

which include cell divisions, death and migration were discussed. In the first model,

migration is included explicitly as a movement to a proximal location. In the second,

it is implicit through the varied ability of cell types to place their offspring a distance

genes involved in cells migratory and invasive machiney or not.

1.4.3 Optimization models:

Bahrmi et al. (1975) dealt with the applications of engineering optimal control

theory to investigate the drug regimen for reducing an exponential tumor cell



population. Swan et al. (1977) has utilized engineering optimal control theory for

chemotherapy problems involving a human tumor. Kang et al. (1982) considered a

continuous bilinear model in state space cell kinetics of a tumor cell population

under the effects of chemotherapy. The time course behaviour of a Chinese-Harvster

Overy (CHO) cell population is simulated and an optimal strategy for cancer

treatment is derived to balance the effects on cancerous as normal tissues.

Martin et al. (1990) discussed an optimal parameter selection model of cancer

chemotherapy which describes the treatment of tumor over a fixed period of time by

the repeated administration of a single drug. The model constructed regimen that

minimize the tumor population by satisfying the constraints of the drug toxicity and

intermediate tumor size. Swan (1990) reviewed various ways in which optimal

control theory interacts with cancer chemotherapy. He suggested the models on

designs of chemotherapy strategies.

Matveev A.S. and Savkin A.V. (2000) studied cancer chemotherapy in the case of

one drug. The negative and inhibiting effect of the tumor on normal cells is taken

into account. They determined optimal regimen that minimizes the tumor burden at

the end of a fixed period of therapy, while maintaining certain normal cell

populations above the prescribed levels. Lim C.C. and Teo K.L. (2002) derived a

mathematical model for an optimal control problem involving drug administration

policy. The problem is stochastic in nature, as there are uncertainties in both the drug

effectiveness and initial physiological state of the patient.  

Marek Kimmel and Andrez Swierniak (2003) applied optimal control theory to

mathematical models of cell dynamics. They are (1) the cell-cycle phase dependence

of treatment and (2) the emergence of resistance of cancer cells to cytotoxic agents.

They have also reviewed results in mathematical modeling and control of the cell

cycle and of the mechanisms of gene amplification (related to drug resistance), and

estimation of parameters of the constructed models. Jasmine Foo, Franziska Michor

(2005) investigated optimal drug dosing schedules to prevent, or atleast delay, the

emergence of resistance they designed and analyzed a stochastic mathematical

model describing the evolutionary dynamics of   a tumor cell population during

therapy treatment optimization on risk of resistance is minimal while considering

drug toxicity and side effects as constraints, to identify optimum drug

administration.



Eyupcetin (2007) derived a mathematical anticancer tool selection model, which

minimizes (or maximizes) the overall survival (or damage) probability of tumor

while keeping the total side effect and the cost of the tool at acceptable levels, for

immuno, chemo radiotherapy planning. The developed model is an integer non-

linear programming problem essentially a therapy portfolio selection problem. It is

assumed that cancer-anticancer interaction may be modeled as customer-server

paradigm of queueing theory. This theoretical study contributes the applications of

operations research in medicine. 

Jean clairambault (2009) determined optimal control of drug delivery with

constraints according to the main pharmacological issues encountered in the clinic

unwanted toxic side-effects, occurrence of drug resistance. Omid Nohadani et al.

(2009) introduced a robust optimization method which handles dosimetric errors and

warrants for high-quality IMRT plans. Dongning Li et al. (2010) addressed the

problem of optimal administration of chemotherapeutic agents for the treatment of

brain tumors by convection-enhanced drug delivery. The optimal catheter position is

located by a novel optimization technique, which simultaneously maximizes drugs

concentration in the desired brain region. A modified finite volume discretization

method is used inside a nonlinear hybrid optimization algorithm. Rao, P.T et al.

(2010) studied a stochastic model for optimal drug administration in cancer

chemotherapy. 

1.5 MOTIVATION OF THE STUDY:

Understanding about a disease like cancer requires much attention on conventional

means. Regarding the reasons for getting cancer, there are innumerable causes either

by physiological or by other external factors of the patient. Modeling cancer cell

growth using mathematical aspects is considered to be a conventional approach. 

Measuring severity of a cancer through estimation is possible when structural

mathematical model behind it is suitable due to physiological and environmental

factors. The problem of cancer cell growth has to be considered as stochastic rather

than deterministic. There is much literature evidence on modeling of cancer cell

growth using stochastic models. 



With reference to the pioneering work of Mayneord (1932), much work has been

reported on tumor growth. Research Conversions have established that the growth of

tumor is random and not a constant. Iverson and Arley (1950) have described the

growth of tumor as pure linear birth process by assuming the probability of a birth is

a constant and it is analogous to a constant specific growth rate. Kendal (1960),

Neyman and Scott (1967) have used a linear birth and death process to describe a

growth of tumor by assuming the probabilities of birth and death are constant and

density independent. Witte et al. (1974) have developed a stochastic model for

growth of solid tumors by considering the physical characteristics of a tumor growth

are dependent and stochastic. It leads to development of density dependent birth and

death process by Dubin (1976). Hanson and Charles Tier (1982) have developed

stochastic model for tumor growth as the diffusion limit of a continuous time density

dependent branching process. John et al. (1984) have developed a stochastic

numerical model of breast cancer node using Gompertzian Kinetics. Serio (1984)

developed a two stage stochastic model with time dependent parameters for

carcinogensis. Gerd Rosenkarinz (1985) used stochastic differential equation for

tumor immunology growth model. Stochastic model using birth and death processes

with spontaneous mutation is developed by Birkhead (1986). Stochastic Modeling

on cancer research assessment using the size of malignant clones is developed by

Dewanji (1989, 1991). Rao, P.T. and Rao, K. S.  (2004, 2006) have developed

different types of stochastic models under spontaneous mutation and proliferation;

cancer cell growth under chemotherapy; Proliferation with inactivation of allele

genes and also in two stage of pre-malignancy and malignancy. Marcinek, A.O. 

(2005) investigated noise induced pattern formation in a model of cancer growth

based on additive and multiplicative noises. Alphano, F.D. (2006) developed a

stochastic model on one Gene Expression Relevant to cancer therapy. Rinaldo

(2006) considered two successive mutation hypothesis to develop a stochastic model

for cancer cells. Lo, C.F. (2009) developed a stochastic non-linear model of tumor

growth for size dependent tumors. Mo, W.I. (2009) has identified differential gene

pair co-expression patterns in prostate cancer by developing a stochastic model.

Contribution on formulation of optimization modeling on drug administration is

reported in the literature. Baianu, I.C. (1986) developed cancer chemotherapy



optimization computing models using branching processes and tree-like morphology

which is similar to human bronchial tree. Matreer, A.S. and Savkin, A.V. (2000)

studied the cancer chemotherapy optimal control drug administration applied to

single drug by considering negative and inhibiting effects of the tumor on normal

cell. Coldman, A.J. and Murray, J.M. (2000) developed a stochastic model of

Chemotherapy for cancer which includes the development of drug resistance, the

concomitant effect on normal system and derived overall measures of outcome.

Stochastic model of drug resistance in cancer was formulated and analyzed by

komarova, N. (2006). Cetin, E. (2007) developed an integer non-linear programming

problem by assuming cancer and anti-cancer interaction is modeled as customer and

server paradigm of Queueing theory. Nohadani, O. et al. (2009) introduced a robust

optimization method to handle dosimetric errors and warrants for high quality IMRT

plans. Rao, P.T. et al. (2010) developed stochastic models for optimal drug

administration in cancer chemotherapy.  

They have considered the growth of cancer in a homogeneous environment whereas

the health status of the patient under drug administration has to be considered as

heterogeneous. The factors like individual physiological, environmental and other

extraneous condition leads to the growth of cancer as not only heterogeneous but

also time dependent. A Very few work on development of stochastic models,

optimal drug design and administration is reported in the literature. In this thesis an

attempt is made to fill the gap of developing stochastic models as well as stochastic

program optimization under heterogeneity and time dependence in cancer growth. 

Our work is dedicated in three domains namely (1) development of stochastic model

under heterogeneous time dependent poisson process (2) Developing stochastic

models for cancer related cell (mutant, premalignant, malignant) growth under the

drug administration and drug recovery periods, (3) Developing stochastic

optimization programming problem for effective and optimal drug administration

subject to monitoring the safe health norms of the patient. This study is useful in 

developing suitable decision support systems for optimal drug administration as well

as optimal drug vacation during chemotherapy treatment.



1.6 FOCUS AND ORGANIZATION OF STUDY:

Observing the cell Kinetics in tumor it is understand that spontaneous mutation,

proliferation of mutant cells, transformation of cells from one stage to other stages

like from normal to mutancy, from mutancy to pre-malignancy and from pre-

malignancy to malignancy and the loss processes of cell at every stage are playing

very important role in studying the growth behaviour, mostly regulated by alleles of

gene. Usually the cell growth is categorized as 1. A normal cell can be divided in to

two normal cells; 2. A normal cell can be divided in to one normal and one mutant

cell (a cell with abnormal behaviour); 3. A mutant cell shall be divided in to two

mutant cells; 4. Mutant cells transformed to premalignant cell; 5. Premalignant cell

will be transformed to malignant cell and 6. A malignant cell (a full fledged

transformed mutant cell as cancer cell) will be further proliferated with faster

growth. It is also evident that there is a loss of normal and mutant cells due to the

immune system of the body. The growth and development of both normal and

mutant cells are non-homogeneous due to several physiological and environmental

factors. Similarly in the case of death or loss of normal and mutant cells are also

non-homogeneous. So, in order to analyze and to develop the tumor growth more

close to reality it is essential to develop density dependent stochastic models with

heterogeneous growth and loss rates for normal and cancer cells.

Chemotherapy is one of the treatments in cancer control with a combination of drugs

administered in cycles with different intensified spells within the cycle. The very

objective of drug administration is to kill the cancer causing cells but it may harm

some of the healthy and normal cells also. Continuous drug administration may leads

to health hazards due to unwanted loss of white blood cells as well as normal and

healthy cells. Hence the patient under the treatment of chemotherapy needs periodic

check of health status and he may be allowed to drug vacation to get recovery. 

Contrary, drug vacation leads to reaggravate the growth of mutant cell population

and hence long term drug vacation also is unwanted. Regarding the dosage levels,

drug administration above the required quantity may harm both normal cells and

white blood cells significantly. Contrary the drug quantity less than the required

level prepare the body drug resistance. And hence there is a need of optimal drug

dosage levels that are to be administrated. As the behaviour of growth, loss of both

normal and mutant cells influenced by drug administration and drug vacation



conditions, the number of cells within the tumor are to be considered as random.

Both internal and external conditions of the patient are also considered to be purely

random and highly volatile. Considering all the above there is an absolute need of

developing an optimization problem with an objective of maximizing the drug

efficacy subject to minimum risk or loss of WBC. Stochastic optimization modeling

is a suitable device in exploring the required decision parameters.

In this thesis an attempt is made to develop stochastic optimization problem for

optimal drug administration. In the first part, a bi-variate stochastic model is

developed for cancer cell growth with an assumption that the growth and loss

processes of normal and mutant cells follows poisson process. In order to observe

the behaviour of the model during chemotherapy, the model is extended for studying

cancer cell growth in the presence and absence of the drug. As chemotherapy is

executed in cycles with different intensified spells, the growth and loss rates of both

normal and mutant cells are considered as heterogeneous and follow Poisson

process. The statistical measures in terms of model parameters are derived such as

means, covariances and variances of both normal and mutant cells. In order to

estimate the parameters of the model a stochastic program problem is formulated.

The objective function for maximizing the drug efficacy was formulated with

decision parameters such as rates of arrivals of normal cells, mutant cells, rate of

transformation of normal cells to mutant cells and the rates of deaths of normal and

mutant cells. The objective function has accommodated the above mentioned

decision parameters in both drug administration and drug vacation periods. The

constraints were formulated by considering the optimal loss of WBC, optimal

minimum size of healthy and normal cells, optimal targeted size of mutant cells

during the period of chemotherapy. Sensitivity of the model was analyzed through

numerical data sets using MATHCAD. Decision parameters are explored using

LINGO software. All the numerical values are thoroughly analyzed and the

stochastic optimization model is interpreted.

This work is very useful for extracting the crucial decision parameters like rates of

arrivals and rates of deaths of normal cells, mutant cells, premalignant cells,

malignant cells at desired levels of WBC count and other health standards.

Development of suitable software and desktop automation to this work will give a

remarkable usage to derive efficient decision support systems.



This study is organized in 5 chapters, chapter-1 deals with overview on cancer

problem, models importance in studying the cancer growth by reviewing the

literature from 1932 to 2010. A brief summary on stochastic models, mathematical

models and optimization models on cancer growth is made. Focus of thesis,

motivation of study is given by highlighting the current developed work and existing

gap in the thrust area of stochastic modeling of cancer cell growth. Chapter-2 deals

with development of stochastic model for cancer growth with spontaneous mutation

and proliferation on normal and mutant cells. As an extension of this section, a

stochastic model for cancer growth during drug administration and drug vacation

periods is developed. In both the sections difference-differential equation are

developed by assuming Linear Bivariate Poisson process in cancer cell growth.

Statistical constants were derived by using probability generating function.

Sensitivity analysis of the model for both the sections is carried out. 

Chapter-3 consists of a two stage stochastic model for mutant cell growth assuming

the growth and loss processes of cancer cell growth are combination of growth of

premalignant and malignant cells. A Bivariate Poisson process is considered to

develop this model under the assumption that the cancer growth is in the

environment of an individual self immunity. A similar model is developed in the

extension section when the patient is under chemotherapy, exposed to drug

administration and drug vacation. Statistical measures are derived from joint

probability function of premalignant and malignant cells using cumulant generating

function. While developing a two-stage model, it is assumed that the growth and loss

of premalignant and malignant cell population is a linear combination of drug

administration and drug vacation periods. Sensitivity analysis for stochastic models

is carried out. 

Chapter-4 contains optimization problems for cancer chemotherapy is developed

through stochastic programming. The arrival and death rates of mutant and normal

cells are assumed as stochastic parameters and estimated them through the

developed stochastic optimization programming problem. The optimality of drug

effectiveness is studied and analyzed through a suitable data. An objective function

for maximizing the drug effectiveness is formulated by considering various inputs

like intensity of drug dose, times of drug administration, times of drug vacation,



cycle lengths of drug administration and drug vacation, loss of WBC and expected

number of existing premalignant and malignant cells etc. Constraints are also

formulated by considering upper and lower desired limits of premalignant cells,

malignant cells, WBC etc. Stochastic parameters namely arrival and death rates of

premalignant and malignant cells during drug vacation and drug administration are

assumed as non-negative. Optimal drug administration policy is analyzed, through

suitable numerical data sets. Chapter-5 includes the summary research findings and

conclusion. The scope of future research work is focused. Computer automation of

this thesis work will give a remarkable advantage to develop decision support system

for health care management people. A detailed bibliography is also presented for

effective reference. 

  



Chapter-2

STOCHASTIC MODEL FOR CANCER GROWTH FOR
SPONTANEOUS MUTATION AND PROLIFERATION

OF CELLS DURING CHEMOTHERAPY

2.1 INTRODUCTION

Abnormal, excessive and uninterrupted proliferation of a cell is referred as cancer. 

The multiplication of cells in a faster growth is referred as malignancy, it is observed

in the cells differed with normal growth. Human system has a mechanism of cell

growth and its regulation with alleles of a gene. The failure of growth control or

regulation mechanism due to inactivation of alleles is one of the innumerable

number of reasons for getting cancer. The body system has a cell growth process as a

measure of compensation to wear & tear and the death of a cell after a specified

period of time. Usually a normal cell which is under regulation of control

mechanism deviates due to unspecified reasons may be named as mutancy. A cell

will get a different behaviour from the usual growth procedure and it further

transforms in the process of cell division. When a normal cell change into a mutant

cell then it may be further transformed into a malignant cell. Once malignancy is

formulated to the cell then the cell growth will be at faster rate and it behaves

beyond the control of natural regulating mechanism.

There is much literature evidence on the formulation of malignancy to a normal cell

attributed to the number of reasons; one among them is spontaneous mutation and

proliferation. In the process of cell division an accumulation of normal and mutant

cells within a tissue may cause a tumor and the tumor will grow further upto the

permissible levels of tissue structure and its mechanism. When the accumulated

cancerous cells are above the unwanted limits within the tumor then the mutant cells

may invade from the origin to various parts of the body through blood flow. Due to

the structure of blood vessels, the mutant cells in the blood flow may be stopped at

the lymph nodes and further it may start in growing of new colonies at the lymphatic

systems. This sort of phenomena can be referred as formulation of secondaries and

invasion of the cancer cells to different parts of the body so that the stomatasis is

formulated.



In order to understand the behaviour pattern from initial formation of mutancy to

final stage of cancer cell growth, a well defined model structure is required. 

Conventional researchers have suggested number of mathematical / deterministic

models to assess the situation. The assumption considering the deterministic

situations in modeling makes the mathematical models confine to very limited

applications. The behaviour of cell division and tumor growth reveals that cell

division from initial growth to accumulation of such cells in a tumor is purely

random and it will have complete stochastic behaviour. Hence model development

with stochasticity is more appropriate for understanding the behaviour of tumor

growth due to spontaneous mutation and proliferation.

In this chapter, we develop a bi-varaite stochastic model for normal and mutant cell

growth. The growth and loss rates processes of both mutant and normal cells are

assumed as Poisson parameters. Difference differential equations and cumulant

generating function are used for finding the statistical measures like expected

number of normal cells and mutant cells at time t. The variance number of normal

and mutant cells and also the covariance number of normal cells and mutant cells are

derived. The model behaviour is observed further by applying a secondary data

obtained from various types of cancer patients with the source of TIFR (Tata

Institute of Fundamental Research), collected through Internet. The sensitivity

analysis is carried out with the available data sets.

In section-II, A bi-varaite stochastic model for normal and mutant cell growths for

the environment of cancer chemotherapy is developed. Drug administration and drug

vacation periods are considered separately in the assumptions and the model is

developed with an intension of exploring more suitable model to the cancer patients

under chemotherapy. The difference differential equations and cumulant generating

function are used in deriving the statistical measures of the model. The source data is

also applied to the model and sensitivity analysis is carried out. These models are

very much useful for health care administration to cancer patients during

chemotherapy. 

2.2 STOCHASTIC MODEL FOR CANCER GROWTH:

In this section a stochastic model using bivariate Poisson process is developed.

Usually cell division behaviour of normal and mutant cells have the mechanism of a

normal cell may be divided into two normal cells; a normal cell may contribute in



generating a normal cell and a mutant cell; a mutant cell once formulated may

generate two mutant cells. Regarding the loss process, a normal cell may get death

either after transforming to mutant cell or without transforming to mutant cell.  The

following schematic diagram will explain the mechanics of the process.

    

   

Figure 2.2.1: Schematic Diagram of the model

2.2.1 Assumptions and Postulates of the Model:

Let the events occurred in non-overlapping intervals of time are statistically

independent. Let

initially at time be the rates of generation of

normal cell from normal cell, mutant cell from normal cell, mutant cell from mutant

s of death of normal cell, and death of mutant cell respectively. 

Also it is assumed that all the events are Poisson parameters. With these

assumptions, the postulates of the model are:

1. The probability of generation of one normal cell during , provided there

exists

2. The probability of generation of one mutant cell from a normal cell during

provided there exists

3. The probability of generation of one mutant cell from a mutant cell during

provided there exists

4. The probability of death of one normal cell during provided there exists

Normal Cell Mutant Cell

Normal Cell Mutant Cell

Death

a



5. The probability of death of one mutant cell during provided there exists

6. The probability of generating no normal cell from a normal cell, no mutant

cell from a normal cell, no mutant cell from mutant cell, no death of normal

cell, no death of mutant cell during an infinitesimal interval of time is

7. The probability of occurrence of other than the above events during an

infinitesimal interval of time is 0

2.2.2 The Difference-Differential Equations of the Model:

Let

. Then the difference-differential equations of the

model are:

                  (2.2.2.1)

(2.2.2.3)

   (2.2.2.4)

With the initial conditions , where are the

initial sizes of normal and mutant cells in the tumor. 

Let be the joint probability generating function of

Multiplying the equations (2.2.2.1) to (2.2.2.4) with and summing overall m

and n, we obtain



     

   

Simplifying the equation (2.2.2.6) and reorganizing the terms we get,

Further simplification of the equation (2.2.2.7) gives



We can obtain the characteristics of the model by using the joint cumulant

generating function of (t). Taking = and = and denoting as

the joint cummulant generating function of (t), eq. (2.2.2.8) becomes

2.2.3 Differential Equations and Statistical Measures of the Model:

Let (t) denotes the moments of order (

Then the differential equations governing (t) are obtained as:

Solving (2.2.3.1) we obtain

Substituting the equation (2.2.3.6) in the equation (2.2.3.2) we get,

Solving the equation (2.2.3.7) we get,

Expected number of mutant cells at is



   

Substituting the equation (2.2.3.6) in the equation (2.2.3.3) we get,

Solving the equation (2.2.3.9) we get

On simplifying the equation (2.2.3.10) we get,

        

Where

Substituting the equation (2.2.3.11) in the equation (2.2.3.4) we get,

On solving the equation (2.2.3.12) we get,

On simplifying the equation (2.2.3.13) we get,

Covariance between

Substituting the equations (2.2.3.6),(2.2.3.8) and (2.2.3.14) in the equation (2.2.3.5)

we get,



   

Solving the equation (2.2.3.15) we get,    

   

Simplifying the equation (2.2.3.16) we get,

Variance of mutant cells at is

Where

2.2.4 Numerical Illustration and Sensitivity Analysis:

In order to verify the model behaviour a simulated data set based on the assumptions

were generated and presented from table number 2.2.4.1 to 2.2.4.8. From equations

(2.2.3.6), (2.2.3.8), (2.2.3.11), (2.2.3.14) and (2.2.3.17) the values



of , , , and are computed for various values of

the parameters and presented in the tables.

Table 2.2.4.1 

Values of m1,0, m0,1, m2,0, m1,1, m0,2 for varying values of N0 at the fixed values of

other parameters with values M0=80; a=0.8; b=0.1; c=1; d=0.5; g=0.9; t=2

N0 m1,0 m0,1 m2,0 m1,1 m0,2

102 185.86 128.35 662.12 63.59 952.53

104 189.50 128.95 675.10 64.84 963.15

106 193.15 129.55 688.08 66.08 973.77

108 196.79 130.15 701.06 67.33 984.38

110 200.43 130.75 714.05 68.58 995.00

From table 2.2.4.1 it is observed that expected number of normal cells, expected

number of mutant cells, variance of normal cells, variance of mutant cells,

covariance between normal cells and mutant cells are increasing functions of the

initial number of normal cells ( ) when all the other parameters are constants. 

Table 2.2.4.2

Values of m1,0, m0,1, m2,0, m1,1, m0,2 for varying values of M0 at the fixed values of

other parameters with values N0=100; a=0.8; b=0.1; c=1; d=0.5; g=0.9; t=2

M0 m1,0 m0,1 m2,0 m1,1 m0,2

85 182.21 133.86 649.13 62.34 967.60

90 182.21 139.96 649.13 62.34 993.29

95 182.21 146.07 649.13 62.34 1019.00

100 182.21 152.18 649.13 62.34 1045.00

105 182.21 158.28 649.13 62.34 1070.00

[

From table 2.2.4.2, it is observed that expected number of mutant cells and variance

of mutant cells are increasing functions of initial number of mutant cells ( ) when

all the other parameters are constants. It is also observed that expected number of

normal cells, variance of normal cells and covariance between normal cells and



mutant cells are invariant of change of initial size of the mutant cells ( ) when all

the other parameters are constants.

Table 2.2.4.3

Values of m1,0, m0,1, m2,0, m1,1, m0,2 s of

other parameters with values N0=100; M0=80; b=0.1; c=1; d=0.5; g=0.9; t=2

a m1,0 m0,1 m2,0 m1,1 m0,2

0.82 189.65 128.40 701.32 66.85 915.47

0.84 197.39 129.07 757.62 71.67 894.09

0.86 205.44 129.75 818.37 76.83 876.63

0.88 213.83 130.46 883.91 82.35 862.28

0.9 222.55 131.183 954.62 88.26 850.44

From table 2.2.4.3 it is observed that expected number of normal cells, expected

number of mutant cells, variance of normal cells, covariance between normal and

mutant cells are increasing functions of rate of generation of normal cells from

normal cells (a) when all the other parameters are constant. And it is also observed

that variance of mutant cells is a decreasing function of rate of generation of normal

cell from normal cells (a) when all the parameters are constants.

Table 2.2.4.4

Values of m1,0, m0,1, m2,0, m1,1, m0,2 for varying v of

other parameters with values N0=100; M0=80; a=0.8; c=1; d=0.5; g=0.9;t=2

b m1,0 m0,1 m2,0 m1,1 m0,2

0.2 182.212 157.784 649.13 124.684 2355.00

0.3 182.212 187.82 649.13 187.026 4649.00

0.4 182.212 217.855 649.13 249.368 7826.00

0.5 182.212 247.891 649.13 311.709 11880.00

0.6 182.212 277.927 649.13 374.051 16830.00



From table 2.2.4.4 it is observed that expected number of mutant cells, covariance

between normal cells and mutant cells, Variance of mutant cells are increasing

functions of the rate of generation of mutant cell from normal cell (b) when all the

other parameters are constant. And it is also observed that expected number of

normal cells, variance of normal cells are invariant of rate of generation of mutant

cell from normal cell (b) when all the other parameters are constant.

Table 2.2.4.5

Values of m1,0, m0,1, m2,0, m1,1, m0,2 for varying v of

other parameters with values N0=100; M0=80; a=0.8; b=0.1; d=0.5; g=0.9; t=2

From table 2.2.4.5 it is observed that expected number of mutant cells, covariance

between normal and mutant cells and variance of mutant cells are increasing

functions of rate of generation of mutant cells from mutant cells (c) when all the

other parameters are constants. Also it is observed that expected number of normal

cells and variance of normal cells are invariant with respect to rate of generation of

mutant cells from mutant cells (c) when all the other parameters are constant.

  

c m1,0 m0,1 m2,0 m1,1 m0,2

1.1 182.212 152.375 649.13 66.627 1322.00

1.4 182.212 262.271 649.13 82.453 1631.00

1.6 182.212 380.243 649.13 96.182 3727.00

1.8 182.212 554.431 649.13 113.318 7829.00

2 182.212 812.037 649.13 134.873 16300.00



Table 2.2.4.6

Values of m1,0, m0,1, m2,0, m1,1, m0,2 for varying v of

other parameters with values N0=100; M0=80; a=0.8; b=0.1; c=1; g=0.9; t=2

From table2.2.4.6, it is observed that expected number of normal cells, expected

number of mutant cells, variance of normal cells and covariance between normal and

mutant cells are decreasing functions of rate of death of normal cells (d) when all

other parameters are constant. Also it is observed that the variance of mutant cells is

an increasing function of rate of death of normal cells.

Table 2.2.4.7

Values of m1,0, m0,1, m2,0, m1,1, m0,2 s of other

parameters with values N0=100; M0=80; a=0.8; b=0.1; c=1; d=0.5; t=2

From table 2.2.4.7 it is observed that expected number of normal cells, variance of

normal cells are invariant of rate of death of mutant cells (g) when all other

parameters are constant. It is also observed that expected number of mutant cells and

d m1,0 m0,1 m2,0 m1,1 m0,2

0.53 171.601 126.807 605.24 58.782 1018.00

0.56 161.607 125.903 564.19 55.41 1129.00

0.59 152.196 125.036 525.82 52.216 1301.00

0.62 143.333 124.203 489.98 49.193 1603.00

0.65 134.986 123.403 456.52 46.335 2272.00

g m1,0 m0,1 m2,0 m1,1 m0,2

0.92 182.212 123.363 649.13 61.535 945.65

0.94 182.212 119.142 649.13 60.744 989.23

0.96 182.212 115.08 649.13 59.968 1123.00

0.98 182.212 111.169 649.13 59.207 1605.00

0.99 182.212 109.268 649.13 58.832 2622.00



covariance between normal and mutant cells are decreasing functions of death of

mutant cells (g) when all the other parameters are constant. It is also observed that

variance of mutant cells is increasing function of rate of death of mutant cells (g)

when all the other parameters are constant.

Table 2.2.4.8

Values of m1,0, m0,1, m2,0, m1,1, m0,2 s of

other parameters with values N0=100; M0=80; a=0.8; b=0.1; c=1; d=0.5; g=0.9

From table 2.2.4.8, it is observed that expected number of normal cells, expected

number of mutant cells, variance of normal cells, covariance between normal and

mutant cells and variance of mutant cells are increasing functions of time (t) when

all the other parameters are constant.

2.3 STOCHASTIC MODEL FOR CANCER GROWTH DURING
CHEMOTHERAPY:

With a similar argument of the previous section 2.2, in this section a bivariate

stochastic model for cell division of normal and mutant cells growth and losses

during drug administration and drug vacation periods are presented. The following

schematic diagram will explain the model in more detailed way.  

t m1,0 m0,1 m2,0 m1,1 m0,2

3 245.96 163.476 1556.00 218.51 1860.00

4 332.012 210.761 3338.00 607.60 3308.00

5 448.169 273.546 6762.00 1491.00 5595.00

6 604.965 357.146 13240.00 3386.00 9235.00

7 816.617 468.721 25360.00 7298.00 15100.00



Figure 2.3.1: Schematic Diagram of the model

2.3.1 Assumptions and Postulates of the model:

Let the events occurred in non-overlapping intervals of time are statistically

0 b0 c0 d0 g0

the rate of generation of normal cell from normal cell, rate of generation of mutant

cell from normal cell, rate of generation of mutant cell from mutant cell, rate of

death of normal cell, rate of death of mutant cell under the absence of chemotherapy. 

1 b1 c1 d1 g1

normal cell, rate of generation of mutant cell from normal cell, rate of generation of

mutant cell from mutant cell, rate of death of normal cell, rate of death of mutant cell

under the presence of chemotherapy. Also it is assumed that all the events are

Poisson parameters. With the above assumptions, the postulates of the model are

1. there

exists

2. The probability of generation of one mutant cell from a normal c

provided there exists   

3.

provided there exists

4.

cells at time

Normal Cell Mutant Cell

Death

Normal Cell Normal Cell Mutant CellMutant Cell

a0 a1

d0 d1 g0 g1

b0 b1 c0 c1



5. there exists

6. The probability of no generation of normal cell from a normal cell, mutant

cell from normal cell, mutant cell from mutant cell and no death of  normal

7. The probability of occurrence of other than the above events during an

2.3.2 The Difference-Differential Equations of the Model:

Let (t) be the joint probability of

cells in a tumor during chemotherapy

differential equations of the model are:

    

)

              

With the initial conditions

  

Where are the initial sizes of normal and mutant cells in the tumor during

chemotherapy. 

Let be the joint probability generating function of

Multiplying the equations (2.3.2.1) to (2.3.2.4) with and summing overall m 



and n we get,       

Rearranging the terms in the equation (2.3.2.6) we get

Further simplification of equation (2.3.2.7) gives



We can obtain the characteristics of the model by using the joint cumulant

generating function of (t). Taking = and = and denoting as

the joint cummulant generating function of (t), the equation (2.3.2.8) becomes

2.3.3 Differential Equations and Statistical Measures:

Let (t) denotes the moments of order ( of normal and mutant cells at time

. Then the differential equations of the model are:

We can obtain the characteristics of the model by solving the equations from 2.3.3.1 

to 2.3.3.5

Solving the equation 2.3.3.1 we get,

  



where is the initial size of the normal cells.

Substituting the equation (2.3.3.6) in the equation (2.3.3.2), we get

Solving the equation 2.3.3.7 we get

Expected number of mutant cells during chemotherapy at

and is the initial size of the mutant cells.       

Substituting the equation (2.3.3.6) in the equation (2.3.3.3) we get,

Solving the equation (2.3.3.9) we get

Variance of normal cells during chemotherapy at time is

   

Substituting the equation (2.3.3.10) in (2.3.3.4) we get,

Solving the equation (2.3.3.11) we get,

Covariance between normal cells and mutant cells during chemotherapy at time is



Substituting the equations (2.3.3.6), (2.3.3.8) and (2.3.3.12) in the equation (2.3.3.5)

we get,

Solving the equation (2.3.3.13) we get,

Where  



2.3.4 Numerical Illustration and Sensitivity Analysis:

From equations (2.3.3.6), (2.3.3.8), (2.3.3.10), (2.3.2.12) and (2.3.3.14) the values of

, , , and are computed for various values of

the parameters and presented in the tables from Table (2.3.4.1) to (2.3.4.13)

Table 2.3.4.1 

Values of m1,0, m0,1, m2,0, m1,1, m0,2 for varying values of N0 at the fixed values of

other parameters with values M0=50; t=7; a0=0.3; a1=0.2; b0=0.5; b1=0.3; c0=0.4;

c1=0.3;  d0=0.4;  d1=0.5; g0=0.9; g1=2

From table 2.3.4.1 it is observed that expected number of normal cells, expected

number of mutant cells, variance of normal cells, variance of mutant cells and

covariance between normal and mutant cells are increasing functions of the initial

number of normal cells ( ) when all the other parameters are constants.

N0 m1,0 m0,1 m2,0 m1,1 m0,2

102 45.832 20.427 88.333 44.096 36.818

104 46.73 20.815 90.065 44.961 37.520

106 47.629 21.204 91.797 45.826 38.223

108 48.528 21.592 93.529 46.690 38.925

110 49.426 21.981 95.261 47.555 39.628



Table 2.3.4.2 

Values of m1,0, m0,1, m2,0, m1,1, m0,2 for varying values of M0 at the fixed values of

other parameters with values N0=100;   t=7; a0=0.3; a1=0.2; b0=0.5; b1=0.3;

c0=0.4;  c1=0.3;  d0=0.4; d1=0.5;  g0=0.9;  g1=2

From  table 2.3.4.2, it is observed that expected number of normal cells, variance of

normal cells and covariance between normal and mutant cells are invariant of change

of initial number of mutant cells ( ) when all the other parameters are constants. It

is also observed that the expected number of mutant cells   variance of mutant cells,

are increasing functions of initial number of mutant cells ( ) when all the other

parameters are constants.

Table 2.3.4.3 

Values of m1,0, m0,1, m2,0, m1,1, m0,2 for varying values of a0 at the fixed values of other

parameters with values N0=100; M0=50; t=7; a1=0.2; b0=0.5; b1=0.3;  c0=0.4;

c1=0.3;  d0=0.4;  d1=0.5; g0=0.9; g1=2

M0 m1,0 m0,1 m2,0 m1,1 m0,2

55 44.933 20.1 86.601 43.232 36.214

60 44.933 20.161 86.601 43.232 36.314

65 44.933 20.223 86.601 43.232 36.413

70 44.933 20.284 86.601 43.232 36.512

75 44.933 20.345 86.601 43.232 36.611

a0 m1,0 m0,1 m2,0 m1,1 m0,2

0.35 49.659 21.557 103.567 55.134 39.622

0.4 54.881 23.205 123.809 71.486 43.55

0.45 60.653 24.993 147.964 94.915 47.955

0.5 67.032 26.936 176.793 130.635 52.904

0.55 74.082 29.045 211.207 190.737 58.472



From table 2.3.4.3 it is observed that expected number of normal cells, expected

number of mutant cells, Variance of normal cells, variance of mutant cells and

covariance between normal cells and mutant cells are increasing functions of the rate

of generation of normal cell from normal cell during the absence of drug ( ) when

all the other parameters are constant.

Table 2.3.4.4 

Values of m1,0, m0,1, m2,0, m1,1, m0,2 for varying values of a1 at the fixed values of other

parameters with values N0=100; M0=50;t=7;a0=0.3;b0=0.5;b1=0.3;c0=0.4; c1=0.3;

d0=0.4;  d1=0.5;  g0=0.9;  g1=2

From table 2.3.4.4, it is observed that the expected number of normal cells, expected

number of mutant cells, variance of normal cells, variance of mutant cells and

covariance between normal cells and mutant cells are increasing functions of rate of

generation of normal cell from normal cell ( during the presence of drug when

all the other parameters are constant.

  

a1 m1,0 m0,1 m2,0 m1,1 m0,2

0.22 46.767 20.631 93.03 48.811 37.471

0.24 48.675 21.243 99.93 55.193 38.889

0.26 50.662 21.876 107.334 62.531 40.372

0.28 52.729 22.529 115.28 71.012 41.925

0.3 54.881 23.205 123.809 80.879 43.55



Table 2.3.4.5 

Values of m1,0, m0,1, m2,0, m1,1, m0,2 for varying values of b0 at the fixed values of

other parameters with values N0=100; M0=50; t=7; a0=0.3; a1=0.2; b1=0.3; c0=0.4;

c1=0.3;  d0=0.4;  d1=0.5; g0=0.9; g1=2

From table number 2.3.4.5, it is observed that expected number of normal cells and

variance of normal cells are invariant of rate of generation of mutant cell from

normal cell during absence of drug ( ) when all the other parameters are constant. It

is also observed that expected number of mutant cells, covariance between normal

and mutant cells and variance of mutant cells are increasing function of rate of

generation of mutant cell from normal cell during absence of drug ( ) when all the

other parameters are constant.

Table 2.3.4.6

Values of m1,0, m0,1, m2,0, m1,1, m0,2 for varying values of b1 at the fixed values of

other parameters with values N0=100; M0=50;  t=7; a0=0.3; a1=0.2; b0=0.5; c0=0.4;

c1=0.3; d0=0.4;  d1=0.5; g0=0.9; g1=2

b0 m1,0 m0,1 m2,0 m1,1 m0,2

0.55 44.933 21.252 86.601 45.934 38.912

0.6 44.933 22.466 86.601 48.636 41.779

0.65 44.933 23.68 86.601 51.338 44.717

0.7 44.933 24.895 86.601 54.04 47.725

0.75 44.933 26.109 86.601 56.742 50.805

b1 m1,0 m0,1 m2,0 m1,1 m0,2

0.33 44.933 20.767 86.601 44.853 37.785

0.36 44.933 21.495 86.601 46.474 39.479

0.39 44.933 22.224 86.601 48.095 41.2

0.42 44.933 22.952 86.601 49.716 42.946

0.45 44.933 23.68 86.601 51.338 44.717



From table 2.3.4.6 it is observed that expected number of normal cells and variance

of normal cells are invariant of rate of generation of mutant cell from normal cell

during the presence of drug ( when all the parameters are constant. It is also

observed that expected number of mutant cells, covariance between normal cells

and mutant cells and variance of mutant cells are increasing functions of rate of

generation of mutant cell from normal cell during the presence of drug ( when all

the parameters are constant.

Table 2.3.4.7

Values of m1,0, m0,1, m2,0, m1,1, m0,2 for varying values of c0 at the fixed values of other

parameters with values N0=100; M0=50; t=7; a0=0.3; a1=0.2; b0=0.5; b1=0.3; c1=0.3;

d0=0.4;  d1=0.5;  g0=0.9;  g1=2

From table 2.3.4.7 it is observed that expected number of normal cells and

variance of normal cells are invariant of rate of generation of mutant cell from

mutant cell during the absence of drug ( when all the other parameters are

constant. It is also observed that expected number of mutant cells, covariance

between normal and mutant cells and variance of mutant cells are increasing

functions of rate of generation of mutant cell from mutant cell during the absence of

drug ( when all the other parameters are constant.

  

c0 m1,0 m0,1 m2,0 m1,1 m0,2

0.5 44.933 21.189 86.601 45.18 39.883

0.6 44.933 22.466 86.601 47.318 44.252

0.7 44.933 23.89 86.601 49.678 49.345

0.8 44.933 25.481 86.601 52.298 55.321

0.9 44.933 27.266 86.601 55.228 62.377



Table 2.3.4.8

Values of m1,0, m0,1, m2,0, m1,1, m0,2 for varying values of c1 at the fixed values of other

parameters with values N0=100; M0=50; t=7; a0=0.3; a1=0.2; b0=0.5; b1=0.3; c0=0.4;

d0=0.4;  d1=0.5;  g0=0.9;  g1=2

From table 2.3.4.8 it is observed that expected number of normal cells and variance

of normal cells are invariant of rate of generation of mutant cell from mutant cell

during the presence of drug ( when all the other parameters are constant. It is also

observed from this table that expected number of mutant cells, covariance between

normal and mutant cells and  variance of mutant cells are increasing functions of rate

of generation of mutant cells from mutant cells during the presence of drug (

when all the other parameters are constant.

Table 2.3.4.9

Values of m1,0, m0,1, m2,0, m1,1, m0,2 for varying values of d0 at the fixed values of other

parameters with values N0=100; M0=50; t=7; a0=0.3; a1=0.2; b0=0.5; b1=0.3; c0=0.4;

c1=0.3;   d1=0.5;  g0=0.9;  g1=2

d0 m1,0 m0,1 m2,0 m1,1 m0,2

0.42 43.171 19.465 82.947 40.505 35.065

0.44 41.478 18.91 79.442 38.014 34.048

0.46 39.852 18.372 76.079 35.731 33.063

0.48 38.289 17.852 72.855 33.63 32.108

0.5 36.788 17.348 69.763 31.692 31.184

c1 m1,0 m0,1 m2,0 m1,1 m0,2

0.32 44.933 20.259 86.601 43.607 36.826

0.34 44.933 20.484 86.601 43.99 37.557

0.36 44.933 20.714 86.601 44.379 38.31

0.38 44.933 20.949 86.601 44.776 39.085

0.4 44.933 21.189 86.601 45.18 39.883



Table 2.3.4.10

Values of m1,0, m0,1, m2,0, m1,1, m0,2 for varying values of d1 at the fixed values of other

parameters with values N0=100; M0=50; t=7; a0=0.3; a1=0.2; b0=0.5; b1=0.3; c0=0.4;

c1=0.3;  d0=0.4;  g0=0.9;  g1=2

From tables 2.3.4.9 and 2.3.4.10, it is observed that expected number cells from

normal cells, expected number of mutant cells, covariance between normal cells and

mutant cells, variance of normal cells and variance of mutant cells are decreasing

functions of rate of death of normal cell during the absence of drug ( and also the 

rate of death of normal cell during the presence of drug ( when all the other

parameters are constant.

Table 2.3.4.11

Values of m1,0, m0,1, m2,0, m1,1, m0,2 for varying values of g0 at the fixed values of

other parameters with values N0=100; M0=50; t=7; a0=0.3; a1=0.2; b0=0.5; b1=0.3;

c0=0.4; c1=0.3;  d0=0.4; d1=0.5;  g1=2

g0 m1,0 m0,1 m2,0 m1,1 m0,2

0.95 44.933 19.506 86.601 42.321 34.901

1 44.933 18.998 86.601 41.448 33.754

1.05 44.933 18.516 86.601 40.611 32.669

1.1 44.933 18.055 86.601 39.807 31.642

1.15 44.933 17.617 86.601 39.036 30.67

d1 m1,0 m0,1 m2,0 m1,1 m0,2

0.55 40.657 18.639 77.743 36.848 33.551

0.6 36.788 17.348 69.763 31.692 31.184

0.65 33.287 16.158 62.583 27.449 28.998

0.7 30.119 15.06 56.127 23.906 26.98

0.75 27.253 14.046 50.327 20.914 25.118



Table 2.3.4.12

Values of m10, m01, m20, m11, m02 for varying values of g1 at the fixed values of

other parameters with values N0=100; M0=50; t=7; a0=0.3; a1=0.2; b0=0.5; b1=0.3;

c0=0.4;  c1=0.3;  d0=0.4; d1=0.5;  g0=0.9;

g1 m1,0 m0,1 m2,0 m1,1 m0,2

2.2 44.933 18.055 86.601 39.807 31.642

2.4 44.933 16.414 86.601 36.892 28.039

2.6 44.933 15.039 86.601 34.377 25.094

2.8 44.933 13.873 86.601 32.184 22.653

3 44.933 12.874 86.601 30.254 20.606

From tables 2.3.4.11 and 2.3.4.12 it is observed that expected number of normal

cells and variance of normal cells are invariant of change of rate death of mutant cell

during the absence ( and presence of drug when all the other parameters are

constant. It is also observed that expected number of mutant cells, covariance

between normal cells and mutant cells and variance of mutant cells are decreasing

functions of rate of death of mutant cells during the absence ( and presence of

drug when all the other parameters are constant.

Table 2.3.4.13

Values of m10, m01, m20, m11, m02 for varying values of t at the fixed values of other

parameters with values N0=100; M0=50; a0=0.3;  a1=0.2; b0=0.5; b1=0.3; c0=0.4;

c1=0.3; d0=0.4; d1=0.5; g0=0.9;  g1=2

t m1,0 m0,1 m2,0 m1,1 m0,2

3 30.119 13.394 73.667 34.095 27.156

4 20.19 8.974 56.397 24.417 19.576

5 13.534 6.015 40.957 16.839 13.744

6 9.072 4.032 28.871 11.43 9.492

7 6.081 2.703 19.989 7.704 6.489

It is observed from table 2.3.4.13 that expected number of normal cells, expected

number of mutant cells, covariance between normal and mutant cells, variance of

normal cells and variance of mutant cells are decreasing functions of time (t) when

all the other parameters are constant.



Chapter-3

MUTANT CELL GROWTH THROUGH TWO STAGE
STOCHASTIC MODELS DURING CHEMOTHERAPY

[

3.1 INTRODUCTION:

In this chapter we propose a two stage stochastic model for cancer cell growth. A

mutant cell, after required stages of transformation will be converted into a

malignant, from then the cell division is at faster growth. In this model we consider

that mutant cell is transformed into premalignant cell and then it will be converted

into malignant cell as a full-fledged cancerous cell. The rates of arrivals to the

premalignant and malignant stages from mutant stage and the death rates of

premalignant and malignant cells are assumed as bivariate Poisson parameters. The

rate of conversion of premalignant cell to malignant cell is also a bivariate Poisson

parameter. A bivariate time dependent Poisson process is developed from which the

necessary differential equations and statistical measures are derived.

In order to observe the model behaviour during chemotherapy, a state dependent

bivariate Poisson process along with time dependency is developed by incorporating

the drug absence as state zero and presence as state one. Difference differential

equations and differential equations of the model are derived from the developed

bivariate Poisson process with the help of probability and cumulant generating

functions. Statistical measures are also derived in both the states. The states are

combined by assuming the relationship between them is a linear combination.

3.2 STOCHASTIC MODEL:

In this section a mutant cell growth is studied as a two stage stochastic model. A

specified behaviour from normal cell division is observed with mutant cell.  This cell

always has a different mechanism in division.  A mutant cell once transformed from

the normal cell it may take further conversion towards a full pledged cancer cell in

two steps namely premalignant and malignant. The rates of growth of premalignant

and malignant cells are varying.  Similarly the death rates of cells in both the stages

are different. The following schematic diagram will be helpful in understanding the

dynamics of cell growth.



Figure: 3.2.1: Schematic diagram of the model

3.2.1 Assumptions and Postulates of the Model:

Let the events occurred in non-overlapping intervals of time are statistically

, , be the

rate of arrival to premalignancy, rate of arrival to malignancy, rate of transformation

from premalignancy to malignancy, rate of death of premalignant cell without

transforming to malignancy, rate of death of malignant cell respectively. Also it is

assumed that all the events are Poisson parameters. The postulates of the model with

the above assumption are:

1.

2. The probability

3. The probability of transformation of premalignant cell to malignant cell

4. The probability of death of one premalignant cell provided there are

5. The probability of death of one malignant cell provided there are

6. The probability of no arrival of premalignant cell, no arrival of malignant cell

no transformation from premalignancy to malignancy, no death of

premalignant cell no death of malignant cell during an infinitesimal interval

Premalignant Cell Malignant Cell

Death



7. The probability of occurrence of other than the above events during an

3.2.2 The Difference-Differential Equations of the Model:

Let

, Then the difference differential equations

of the model are:

         

With the initial conditions

  

Where are the initial sizes of the premalignant and the malignant cells in the

tumor. 

Let be the joint probability generating function of

Multiplying the equation    (3.2.2.1) to (3.3.2.4) with and summing overall m 

and n, we obtain

  



This implies

On simplifying the equation (3.2.2.6) we get,

We can obtain the characteristics of the model by using the joint cummulant

generating function of  (t). Taking = and = and denoting as

the joint cummulant generating function of (t), we obtain the following:

3.2.3 Differential Equations and Statistical Measures of the Model:

Let (t) denotes the moments of order ( of premalignant and malignant cells at

. Then the differential equations governing (t) are obtained as:



Solving the equation 3.2.3.1 we get,

On simplifying the equation 3.2.3.6 we get,

Substituting the equation 3.2.3.7 in the equation 3.2.3.2 and on solving the resultant

equation we get,

On simplifying the equation 3.2.3.8 we get,

Substituting the equation 3.2.3.7 in the equation 3.2.3.3 we get,



Solving the equation 3.2.3.10 we get,

Variance of premalignant cells at is

Substituting the equations 3.2.3.6 and 3.2.3.11 and solving the equation we get,

Covariance between premalignant and malignant cells at is

Substituting the equations (3.2.3.7), (3.2.3.9) and (3.2.3.12) in the equation (3.2.3.5)

and solving we get

On simplifying the equation 3.2.3.13 we get,

Variance of malignant cells at 

3.2.4 Numerical Illustration and Sensitivity Analysis:

In order to verify the model behaviour, a simulated data set based on the mentioned

assumptions are generated and presented from tables 3.2.4.1 to 3.2.4.8. From



equations (3.2.3.7), (3.2.3.9), (3.2.3.11), (3.2.3.12) and (3.2.3.14) the values of

, , , and are computed for various values of

the parameters and presented in the tables.

Table 3.2.4.1 

Values of m1,0, m1,0, m2,0, m1,1, m0,2 for varying values of N0 at the fixed values of

other parameters with values M0

N0 m1,0 m0,1 m2,0 m1,1 m0,2

102 6.806 0.838 6.429 -0.042 0.833

104 6.928 0.852 6.543 -0.043 0.847

106 7.05 0.865 6.658 -0.044 0.86

108 7.171 0.879 6.772 -0.044 0.874

110 7.293 0.892 6.886 -0.045 0.887

It is observed from table 3.2.4.1 that expected number of premalignant cells,

expected number of malignant cells, variance of premalignant cells and malignant

cells are increasing functions of initial number of premalignant cells ( ) when all

other parameters are constant. Also it is observed that covariance between

premalignant and malignant cells is negative and decreasing with respect to increase

in the initial number of premalignant cells.

Table 3.2.4.2 

Values of m1,0, m1,0, m2,0, m1,1, m0,2 for varying values of M0 at the fixed values of

other parameters with values N0

M0 m1,0 m0,1 m2,0 m1,1 m0,2

100 6.685 0.827 6.315 -0.041 0.822

150 6.685 0.829 6.315 -0.041 0.824

200 6.685 0.831 6.315 -0.041 0.827

250 6.685 0.834 6.315 -0.041 0.829

300 6.685 0.836 6.315 -0.041 0.831

It is observed from the table 3.2.4.2 that expected number of premalignant cells and

variance of number of premalignant cells are invariant of change of initial number of



malignant cells( ) when all other parameters are constant. And it is also observed

that expected number of malignant cells and variance of malignant cells are

increasing functions of initial number of malignant cells ( ) when all other

parameters are constant.

Table 3.2.4.3

Values of m1,0, m1,0, m2,0, m1,1, m0,2 for varying values of alpha at the fixed values of

other parameters with values N0=100; M0

alpha m1,0 m0,1 m2,0 m1,1 m0,2

1 6.752 0.83 6.382 -0.041 0.825

1.5 7.087 0.856 6.717 -0.041 0.851

2 7.423 0.882 7.053 -0.041 0.878

2.5 7.758 0.908 7.388 -0.041 0.904

3 8.094 0.934 7.724 -0.041 0.93

From table 3.2.4.3 it is observed that expected number of premalignant cells,

expected number of malignant cells variance of premalignant cells and variance of

malignant cells are increasing functions of rate of generation of premalignant cells

and covariance between premalignant and malignant cells is negative and invariant

constant.

Table 3.2.4.4

Values of m1,0, m1,0, m2,0, m1,1, m0,2 for varying values of beta at the fixed values of

other parameters with values N0=100; M0

beta m1,0 m0,1 m2,0 m1,1 m0,2

0.55 6.685 0.835 6.315 -0.041 0.83

0.6 6.685 0.845 6.315 -0.041 0.84

0.65 6.685 0.855 6.315 -0.041 0.85

0.7 6.685 0.865 6.315 -0.041 0.86

0.75 6.685 0.875 6.315 -0.041 0.87



From table 3.2.4.4 it is observed that expected number of premalignant cells and

variance of premalignant cells are invariant of rate of generation of malignant cells

umber

of malignant cells and variances of malignant cells are increasing functions of rate of

) when all the other parameters are constant. Further

it is observed that covariance between premalignant and malignant cells are negative

and invariant of rate of generation of malignant cells.

Table 3.2.4.5

Values of m1,0, m1,0, m2,0, m1,1, m0,2 for varying values of gamma at the fixed values

of other parameters with values N0=100; M0

gamma m1,0 m0,1 m2,0 m1,1 m0,2

0.44 6.203 0.846 5.888 -0.039 0.841

0.48 5.758 0.862 5.49 -0.037 0.857

0.52 5.347 0.874 5.118 -0.034 0.869

0.56 4.967 0.881 4.772 -0.032 0.876

0.6 4.616 0.884 4.45 -0.029 0.879

From table 3.2.4.5 it is observed that expected number of premalignant cells and

variance of premalignant cells are decreasing functions of rate of transformation to

malignant cells from premalignant cells ( ) when all other parameters are constant. It

is also observed from table 3.2.4.5 that variance of malignant cells is an increasing

function of rate of transformation of malignant cell from premalignant cell ( ) when

all other parameters are constant. Further it is observed that covariance between

premalignant and malignant cells are negative and increasing with respect to rate of

transformation from premalignant cell to malignant cell. 



Table 3.2.4.6

Values of m1,0, m1,0, m2,0, m1,1, m0,2 for varying values of delta at the fixed values of

other parameters with values N0=100; M0

delta m1,0 m0,1 m2,0 m1,1 m0,2

1.2 4.616 0.624 4.45 -0.02 0.621

1.3 3.849 0.546 3.738 -0.013 0.545

1.4 3.219 0.482 3.144 -0.01 0.48

1.5 2.7 0.427 2.65 -0.01 0.426

1.6 2.273 0.381 2.24 -0.004 0.38

From table 3.2.4.6 it is observed that the expected numbers of premalignant cells,

expected number of malignant cells, variance of premalignant cells and variance of

malignant cells are decreasing functions of rate of death of premalignant cells. Also

it is observed that covariance between premalignant and malignant cells is negative

and increasing with respect to rate of death of premalignant cells.

Table 3.2.4.7

Values of m1,0, m1,0, m2,0, m1,1, m0,2 for varying values of teta at the fixed values of

other parameters with values N0=100; M0

theta m1,0 m0,1 m2,0 m1,1 m0,2

6 6.685 0.652 6.315 -0.032 0.649

7 6.685 0.54 6.315 -0.026 0.538

8 6.685 0.461 6.315 -0.022 0.459

9 6.685 0.402 6.315 -0.019 0.401

10 6.685 0.357 6.315 -0.017 0.356

From table 3.2.4.7 it is observed that expected number of premalignant cells and

when all other parameters are constant. It is also observed that expected number of

malignant cells variance of malignant cells are decreasing functions of rate of death



Further it is observed

that covariance between premalignant and malignant cells are negative and

increasing with respect to rate of death of malignant cells when all other parameters

are constant.

Table 3.2.4.8

Values of m1,0, m1,0, m2,0, m1,1, m0,2 s of

other parameters with values N0=100; M0

t m1,0 m0,1 m2,0 m1,1 m0,2

3 2.133 0.317 2.11 -0.00250 0.317

4 1.01 0.192 1.009 -0.00015 0.192

5 0.733 0.161 0.733 -0.00001 0.161

6 0.665 0.154 0.665 0.00000 0.154

7 0.648 0.152 0.648 0.00000 0.152

From table 3.2.4.8 it is observed that expected number of premalignant cells,

expected number of malignant cells and variance of premalignant cells and variance

of malignant cells are decreasing functions of time (t) when all other parameters are

constant. It is also observed that covariance between premalignant and malignant

cells is negative and in

3.3 STOCHASTIC MODEL DURING CHEMOTHERAPY:

With a similar view of mechanism of previous section 3.2, in this section a two stage

stochastic model for cell division in premalignant and malignant cells during the

chemotherapy is explained. The following schematic diagram will explain the

model behaviour in more detailed lines. 



Figure 3.3.1: Schematic diagram of the model

3.3.1 Assumptions and Postulates of the Model:

Let the events occurred in non-overlapping intervals of time are statistically

independent. Let

0, 0, 0, 0, 0

respectively be the rate of arrival to pre-malignancy, rate of arrival to malignancy, 

rate of transformation from pre-malignancy to malignancy, rate of death of

premalignant cell without transforming to malignancy, rate of death of malignant

cell during the absence of chemotherapy. 

1, 1, 1, 1, 1 respectively be the rate of arrival to pre-malignancy, rate of

arrival to malignancy, rate of transformation from pre-malignancy to malignancy, 

rate of death of premalignant cell without transforming to malignancy, rate of death

of malignant cell during the presence of chemotherapy. Also it is assumed that all

the events are Poisson parameters. Further in the previous model we assume that the

cell growth of normal and mutant cells are additive in nature irrespective of drug

absence or presence. In this section we consider the mutant cell growth during the

presence and absence of chemotherapy, in which the growth/loss of rates of mutant

cells are a linear/convex combination of its growth/loss rates.

0 1 are the rates of arrival of premalignant cells during the absence and

  

Premalignant
Cell

Malignant
Cell

Premalignant
Cell

Malignant
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Death



; ; Similarly the rate of arrival of malignant cells at

is ; ;The rate of transformation of premalignant

The rate of death

; ; The rate of death

; ;

With the above assumptions, the postulates of the model are:

1. The probability of arrival of one premalignant cell during is

2. The probability of arrival of one malignant cell during is

The probability of transformation of premalignant cell to malignant cell

provided there exists

4. The probability of death of one premalignant cell provided there exists

premalignant c

5. The probability of death of one malignant cell provided there exists

6. The probability of no arrival of premalignant cell, no arrival of malignant cell,

no transformation from pre-malignancy to malignancy, no death of

premalignant cell, and no death of malignant cell during an infinitesimal

interval of time is

The probability of occurrence of other than the above events during an

infinitesimal interval of time is

3.3.2 The Difference-Differential Equations of the Model:

Let (t) be the joint probability of existing of

malignant cells in a tumor during chemotherapy . Then the

difference-differential equations of the model are:



With the initial conditions

Where N0, M0 are the initial sizes of premalignant and malignant cells in the tumor

during chemotherapy. 

Let be the joint probability generating function of

Multiplying the equations (3.3.3.1) to (3.3.3.4) with and summing overall m

and n we have



Simplifying and rearranging the terms in the equation 3.3.2.6, we get

We can obtain the characteristics of the model by using the joint cumulant

generating function of (t). Taking = and = and denoting as

the joint cumulant generating function of (t), we obtain the following:



3.3.3 Differential Equations and Statistical Measures of the Model:

Let (t) denote the moments of order ( of premalignant and malignant cells at

. Then the differential equations governing (t) are obtained as:

Solving the differential equations from 3.3.3.1 to 3.3.3.5 we get



                                             

Covariance between premalignant and malignant cells during chemotherapy at

  



  

...(3.3.3.10)

3.3.4 Numerical Illustration and Sensitivity Analysis:

From equations (3.3.3.6), (3.3.3.7), (3.3.3.8), (3.3.3.9) and (3.3.3.10) the values of

, , , and are computed for various values of

the parameters and presented in the tables from (3.3.4.1) to (3.3.4.13)

  



Table 3.3.4.1 

Values of m1,0, m1,0, m2,0, m1,1, m0,2 xed values of

other parameters with values N0 =100; M0 0 0 0 0 1

1 1= 0.1 1 1= 0.9; t=5

0 m1,0 m0,1 m2,0 m1,1 m0,2

1 1.811 2.969 1.796 -0.02 79.218

1.5 1.924 3 1.909 -0.02 82.204

2 2.036 3.032 2.021 -0.02 85.19

2.5 2.148 3.064 2.133 -0.02 88.177

3 2.26 3.095 2.245 -0.02 91.163

Table 3.3.4.2 

Values of m1,0, m1,0, m2,0, m1,1, m0,2 s of

other parameters with values N0 =100; M0 0 0 0= 0= 0.3;

0 1 1 1 1= 0.9; t=5

1 m1,0 m0,1 m2,0 m1,1 m0,2

0.45 1.834 2.975 1.819 -0.02 79.815

0.5 1.879 2.988 1.864 -0.02 81.01

0.55 1.924 3 1.909 -0.02 82.204

0.6 1.969 3.013 1.953 -0.02 83.399

0.65 2.013 3.026 1.998 -0.02 84.593

From table 3.3.4.1 and 3.3.4.2 it is observed that expected number of premalignant

cells and malignant cells; variance of premalignant cells and variance of  malignant

cells are increasing functions of arrival rate of premalignant cells under the absence

of drug ( ) and the presence of drug ( ) when all other parameter are constant.

Further it is observed that covariance between premalignant and malignant cells is

invariant of arrival rate of premalignant cells under the absence of drug ( ) and

under the presence of drug ( ) when all other parameters are constant.



Table 3.3.4.3 

Values of m1,0, m1,0, m2,0, m1,1, m0,2 0 at the fixed values of

other parameters with values N0 =100; M0 0 0= 0.9; 0 0 1

1 1 1 1= 0.9; t=5

0 m1,0 m0,1 m2,0 m1,1 m0,2

0.7 1.789 2.996 1.774 -0.02 78.655

0.8 1.789 3.03 1.774 -0.02 78.689

0.9 1.789 3.064 1.774 -0.02 78.723

1 1.789 3.098 1.774 -0.02 78.757

2 1.789 3.439 1.774 -0.02 79.097

Table 3.3.4.4 

Values of m1,0, m1,0, m2,0, m1,1, m0,2 1 at the fixed values of

other parameters with values N0 =100; M0 0 0=0.6 0=0.9 0=0.3;

0 1= 1=0.1 1= 1=0.9; t=5

1 m1,0 m0,1 m2,0 m1,1 m0,2

0.6 1.789 3.121 1.774 -0.02 78.78

0.8 1.789 3.28 1.774 -0.02 78.938

1 1.789 3.439 1.774 -0.02 79.097

1.2 1.789 3.598 1.774 -0.02 79.256

1.4 1.789 3.756 1.774 -0.02 79.415

From table 3.3.4.3 and 3.3.4.4 it is observed that expected number of premalignant

cells, variance of premalignant cells and covariance between premalignant and

malignant cells are invariant of arrival rate of malignant cells under the presence of

drug ( ) and the absence of drug ( ) when all other parameters are constant. It is

also observed that expected number of malignant cells and variance of malignant

cells are increasing functions of arrival rate of malignant cells under absence of drug

( ) and presence of drug( )  when all other parameters are constants. 

  



Table 3.3.4.5 

Values of m1,0, m1,0, m2,0, m1,1, m0,2 0 at the fixed values of

other parameters with values N0 =100; M0 0 0 = 0.6 0 0= 0.8;

1 1 = 0.4 1 1 1= 0.9; t=5

0 m1,0 m0,1 m2,0 m1,1 m0,2

1 1.66 3.012 1.648 -0.019 69.963

1.5 1.17 3.177 1.166 -0.012 65.511

2 0.861 3.247 0.86 -0.01 64.047

2.5 0.664 3.267 0.663 -0.005 63.076

3 0.534 3.26 0.534 -0.003 62.402

Table 3.3.4.6

Values of m1,0, m1,0, m2,0, m1,1, m0,2 1 at the fixed values of

other parameters with values N0=100; M0 0 0 0 0=0.3;

0=0.8 1 1 1 1=0.9; t=5

1 m1,0 m0,1 m2,0 m1,1 m0,2

0.4 0.815 3.254 0.813 -0.007 63.823

0.45 0.732 3.263 0.732 -0.006 63.422

0.5 0.664 3.267 0.663 -0.005 63.076

0.55 0.605 3.266 0.605 -0.004 62.776

0.6 0.556 3.263 0.556 -0.003 62.518

From tables 3.3.4.5 and 3.3.4.6 it is observed that expected number of premalignant

cells, variance of pre malignant cells; variance of malignant cells are decreasing

functions of rate of transformation of premalignant cells to malignant cells during

the drug absence ( ) and the presence of the drug ( ) when all the other parameters

are constant. Also it is observed that covariance between premalignant cells and

malignant cells & expected number of malignant cells are increasing functions of

rate of transformation of malignant cells from premalignant cells during the absence

of drug( ) and also during the presence of drug ( ) when all the other parameters

are constants. 



Table 3.3.4.7

Values of m1,0, m1,0, m2,0, m1,1, m0,2 0 at the fixed values of

other parameters with values N0 =100; M0 0 0 = 0.6 0 0= 0.8;

1 1 1 1 1= 0.9; t=5

0 m1,0 m0,1 m2,0 m1,1 m0,2

0.32 1.762 2.945 1.748 -0.02 72.25

0.36 1.71 2.913 1.697 -0.018 66.498

0.4 1.66 2.881 1.648 -0.017 63.85

0.44 1.612 2.849 1.601 -0.016 62.344

0.48 1.566 2.819 1.555 -0.015 61.384

Table 3.3.4.8

Values of m1,0, m1,0, m2,0, m1,1, m0,2 1 at the fixed values of

other parameters with values N0 =100; M0 0 0 0 0= 0.3;

0 1 1 1 1= 0.9; t=5

1 m1,0 m0,1 m2,0 m1,1 m0,2

0.75 1.543 2.804 1.533 -0.015 61.027

0.8 1.34 2.665 1.333 -0.011 59.335

0.85 1.17 2.542 1.166 -0.008 58.832

0.9 1.03 2.434 1.027 -0.006 58.657

0.95 0.913 2.338 0.91 -0.005 58.607

From tables 3.3.4.7 and 3.3.4.8 it is observed that expected number of premalignant

cells and expected number of malignant cells, variance of premalignant and

malignant cells are decreasing functions and covariance between premalignant and

malignant cells is negative and decreasing function of rate of death of premalignant

cells under absence of drug ( ) and presence of drug ( ) when all other parameters

are constants. 



Table 3.3.4.9

Values of m1,0, m1,0, m2,0, m1,1, m0,2 0 at the fixed values of

other parameters with values N0 =100; M0 0 0 0 0= 0.3;

1 1 1 1 1= 0.9; t=5

0 m1,0 m0,1 m2,0 m1,1 m0,2

0.82 1.789 2.914 1.774 -0.02 94.639

0.84 1.789 2.867 1.774 -0.019 3.507

0.86 1.789 2.822 1.774 -0.019 46.432

0.88 1.789 2.777 1.774 -0.019 51.12

0.9 1.789 2.733 1.774 -0.019 52.028

Table 3.3.4.10

Values of m1,0, m1,0, m2,0, m1,1, m0,2 1 at the fixed values of

other parameters with values N0 =100; M0 0 0 = 0.6 0= 0.9 0= 0.3;

0= 0.8 1 1 = 0.4 1= 0.1 1= 0.7; t=5

1 m1,0 m0,1 m2,0 m1,1 m0,2

0.93 1.789 2.799 1.774 -0.02 27.326

0.94 1.789 2.748 1.774 -0.019 33.701

0.95 1.789 2.698 1.774 -0.018 35.469

0.96 1.789 2.649 1.774 -0.018 35.689

0.97 1.789 2.602 1.774 -0.018 35.225

From tables 3.3.4.9 and 3.3.4.10 it is observed that expected number and variance of

premalignant cells are invariant. Expected number of malignant cells is decreasing

function and variance of malignant cells is increasing function of rate of death of

malignant cells under absence of drug ( ) and presence of drug ( ) when all other

parameters are constants.



Table 3.3.4.11

Values of m1,0, m1,0, m2,0, m1,1, m0,2 for varying values of N0 at the fixed values of

other parameters with values M0 0 0 = 0.6 0= 0.9 0 0= 0.8 1

1 1 1 1= 0.9; t=5

N0 m1,0 m0,1 m2,0 m1,1 m0,2

102 1.813 2.995 1.798 -0.02 80.983

103 1.826 3.011 1.81 -0.021 82.163

104 1.838 3.028 1.822 -0.021 83.344

105 1.85 3.044 1.834 -0.021 84.525

106 1.863 3.06 1.847 -0.021 85.706

It is observed from table 3.3.4.11 that expected number of premalignant cells and

expected number of  malignant cells , variance of premalignant cells and malignant

cells are increasing functions and covariance between premalignant and malignant

cells is invariant of change of initial number of pre malignant cells ( ) when all

other parameters are constants.

Table 3.3.4.12

Values of m1,0, m1,0, m2,0, m1,1, m0,2 for varying values of M0 at the fixed values of

other parameters with values N0 0 0 0= 0.9 0 0 1

1 1 1 1= 0.9; t=5

M0 m1,0 m0,1 m2,0 m1,1 m0,2

55 1.789 3.027 1.774 -0.02 84.493

60 1.789 3.091 1.774 -0.02 90.366

65 1.789 3.156 1.774 -0.02 96.239

70 1.789 3.22 1.774 -0.02 102.111

75 1.789 3.285 1.774 -0.02 107.984



From table 3.3.4.12 it is observed that expected number of premalignant cells;

variance of premalignant cells and covariance between premalignant and malignant

cells are invariant of change of initial number of malignant cells ( ) when all other

parameters are constant. Further it is observed that expected number of and variance

of malignant cells are increasing functions of initial number of malignant cells ( )

when all other parameters are constants. 

Table 3.3.4.13

Values of m1,0, m1,0, m2,0, m1,1, m0,2 s of

other parameters with values N0 =100; M0 0 0 0 0= 0.3;

0 1 1 1 1 1= 0.9; t=5

t m1,0 m0,1 m2,0 m1,1 m0,2

4.3 2.828 4.451 2.777 -0.059 176.026

4 3.511 5.34 3.424 -0.093 234.286

3.3 6.017 8.245 5.717 -0.262 428.378

3 7.664 9.942 7.155 -0.403 545.672

2.3 13.706 15.311 11.96 -1.056 938.608

From table 3.3.4.13 it is observed that expected number of premalignant cells,

expected number of malignant cells, variance of premalignant cells and variance of

constants and covariance between of premalignant cells and malignant cells is

s.

  



Chapter 4

STOCHASTIC PROGRAMMING PROBLEM FOR
OPTIMAL DRUG ADMINISTRATION DURING

CHEMOTHERAPY

4.1: INTRODUCTION:

Stochastic models for cancer cell growth with spontaneous mutation and

proliferation are developed in chapter 2. The model also considered the behaviour of

cancer cell growth under chemotherapy environment for drug administration and

drug vacation periods. A two stage stochastic model for cancer cell growth when a

mutant cell has transformation of premalignant and malignant cells is developed in

chapter 3. An extension model is developed for two stage cancer growth when the

patient is under chemotherapy. The statistical measures like average number and

variance number of different kinds of cells are derived in both the models.

Usually the drug administration for cancer treatment can be done with the

chemotherapy, in which the treatment consisting of induced chemicals to kill cancer

cells. In practice the drug may target the normal cells and leads to loss of white

blood cells. Hence continuous drug administration to a cancer patient may give

adverse effects by developing health hazards due to heavy loss of white blood cells.

Therefore the patient may be allowed to drug vacation. During this period he will get

recovery from health hazards due to the toxicity of the chemicals. But there is a

problem of re-aggravating the cancer causing cells. 

Both continuous drug administration and continuous drug vacation for long time are

unwanted and hence threshold limits for minimum and maximum times for drug

administration and drug vacation are very essential. Similarly the drug dosage levels

less than the minimum required quantity and above the maximum required quantity

are also harmful as the first case leads to drug resistance and the second case leads to

loss of WBC. And hence threshold limits for minimum and maximum quantity of the

drug has to be administered. The conventional method of chemotherapy consists of

drug is administered in spells and different units of drug dosage is administered

within each spell. For example there may be two to three times of drug

administration per day and at each time there may be two to three tablets (units of



drug) are consumed. This sort of drug usage may be continued for successive days as

per the baring abilities of the patient. And hence it is observed that two to three

tablets per time; two to three times per day and consecutive days per spell of drug

administration in the procedure of chemotherapy. Similarly the drug vacation also

includes one to two units of vacation times per day; number of drug vacation days

per spell and number of spells of drug vacation per cycle during the total period of

chemotherapy.  

The very important aspect of the treatment with chemotherapy is to evaluate the

health status of the patient during the period of the treatment. Most often the count of

white blood cells, the desired upper and lower limits of it have to be assessed

thoroughly. Similarly it is always a good practice to estimate the number of normal

cells, the number of mutant cells, the number of premalignant cells and also the

number of malignant cells in a tumor. The developed models

mentioned in the previous chapters will help in understanding the above mentioned.

Using all these, a stochastic programming problem for optimal designing of drug

administration is formulated. An objective function is formulated to maximize the

drug efficacy. The constraints with desired levels of upper and lower limits of

normal cells, mutant cells, limits of WBC etc, are developed.

The decision variables like the rates of arrivals of normal and mutant cells, death

rates from the normal and mutant cells etc. can be obtained with developed

stochastic programming problem. In this chapter an optimization stochastic

programming problem is developed to explore the parameters / decision variables

like growth rates, death rates and the rate of transformation from one stage to

another stage. The aspects like number of units of drug per spell, number of spells of

drug administration per cycle, number of cycles for drug administration in a

chemotherapy, number of time units per unit of vacation, number of days in a drug

vacation, number of drug vacations during the total chemotherapy period are

considered in developing the objective function as well as constraints. Further the

statistical measures obtained through the developed stochastic models such as

average number of normal and mutant cells in drug absence and drug presence are

considered. These models will be helpful in development of optimal decision support 

systems, for health care industry. 

  



4.2: PROGRAMMING     PROBLEM FOR OPTIMAL DRUG
ADMINISTRATION FOR NORMAL AND MUTANT CELLS:

4.2.1: Formulation of objective function:

of drug on one normal cell during

cycle and spell of drug administration, where l, the number of

cycles; and = 1, 2,..., k, the number of spells. Let be the number of units of drug

doses given in cycle and spell on one normal cell. Which implies the impact

of units of drug on one normal cell is .  . Therefore the total positive

is

number of normal cells at time is

Where E ( ) is the average number of normal cells during drug administration at

0 = d0 = 0.

Let be the negative effectiveness of one unit of drug on one normal cell during

cycle and spell of its administration. Then negative impact of units of

drug on one normal cell is  . . Therefore the total negative impact of drug

lls on one normal cell is  

is

Let denotes the net effect of drug administration on average number of normal

cells at time then



which implies

Therefore  ; where

Let be the positive effectiveness of one unit of drug on one mutant cell (i.e., 

killing of mutant cell) during cycle and spell of its administration. Then

positive impact of units of drug on one mutant cell is  . . Therefore total

is

where is the average number of mutant cells during drug administration at

0=a0=d0=g0=c0=0

Let be the negative impact of one unit of drug administration on one mutant cell

during cycle and spell of its administration. Then negative impact of units

of drug on one mutant cell is  . . Therefore the total negative impact of drug



is

Let denotes the net effect of drug administration on average number of mutant 

Hence = Q. E ( ;

Let be the positive impact of drug vacation per unit time on day of cycle

on one normal cell where -1, the number of drug vacation cycles, = 1, 

, n, the number of days in a vacation cycle.  Let be the number of time units

of drug vacation in day of  cycle. Then positive impact of time units of

drug vacation on one normal cell is . . The total positive impact of drug

vacation on one normal cell during time units in day of cycle is

Which implies total positive impact of drug vacation on average number of normal

cells during time units in cycles and number of days at is

Where E ( ) denote the average number of normal cells during the drug vacation,

obtained from the equation (2.3.3.6), by assuming a1=d1=0

Let of drug vacation on one normal cell during  day

of cycle. Which implies negative impact of drug vacation on one normal cell

is . Then total negative impact of drug vacation on one normal cell during

time units of cycles and number of days is



Therefore total negative impact of drug vacation on average number of normal cells

during time units of cycles and number of days is

Let denote the net impact factor of drug vacation on average number of normal

cell during time units of cycles and number of days, then

Which implies = R. E ( );

Let be the positive impact of drug vacation on one mutant cell during day of

cycle. Then positive impact of time units of drug vacation on one mutant

cell is Hence total positive impact of drug vacation on one mutant cell

during time units in day of cycle is 

The total positive impact of drug vacation on one mutant cell during time units

of cycles and number of days is  

Where E denote the average number of mutant cells during drug vacation,

obtained from the equation (2.3.3.8), by assuming a1=b1=d1=g1=c1=0

Let be the negative impact of drug vacation on one mutant cell during day

of cycle. Then the total negative impact factor of drug vacation on average

number of mutant cells during time units of cycles and number of days is



Let denotes the net impact factor of drug vacation on average number of mutant

cells during time units of cycles and number of days then   

Now let be the overall positive impact of drug during chemotherapy on both

normal and mutant cells due to drug administration and drug vacation. Then from

equations 4.2.1.6, 4.2.1.12, 4.2.1.18 and 4.2.1.22, can be expressed as

=

Where are as given in the equations 4.2.1.6, 4.2.1.12, 4.2.1.18 and

4.2.1.22

4.2.2: Formulation of constraints:

Let denote the loss of WBC of one unit of drug administration for loss of one

normal cell during cycle and spell. Then loss of WBC by units of drug

administration for loss of one normal cell is . The total loss of WBC during

expected number of normal cells is

Let WU, WL be the desired and optimal upper limit, lower healthy sizes of WBC

respectively during which the drug administration will be suggested. Then the



constraint of drug administration with respect to WBC loss count on average number

of normal cells is

Let be the loss of WBC per unit time during  day of cycle of drug

vacation due to growth of one mutant cell. Since is the number of unit times in

day of cycle of drug vacation, the total loss of WBC per unit time in day

of cycle is . . Then total loss of WBC in cycles and number of days

on one mutant cell is 

The total loss of WBC in cycles and number of days on average number of

mutant cells is   

Therefore the constraint of drug vacation with respect to WBC loss count on mutant

cells is  

During the treatment with chemotherapy the drug has to be administrated in cycles. 

When the drug is administered though the objective of the chemicals is to kill the

cancer causing cells, they may kill some normal and healthy cells also. Due to this

problem, there is a remarkable loss of WBC as well as normal cells. Hence there is a

need of maintaining some minimum average number of normal cells during drug

administration. When drug administration is stopped there is a possibility of growing

normal cells, at the same time there is an equal chance of aggravating the growth of

mutant cells. The growth of mutant cells will be either from existing mutant cells or

from the existing normal cells. Let NL be the lower required limit of average number

of normal cells in tumor and NU be the upper required limit in maintainance of



average number of normal cells. Then the constraint of drug administration and drug

vacation regarding expected number of normal cells are

E

E

Let ML and MU respectively be the lower feasible limit and upper target limits of

expected number of mutant cells during drug administration. Then the constraint

with respect to drug administration on mutant cells is:

E

E

4.2.3: Optimization problem:   

From equations 4.2.1.23, 4.2.2.3, 4.2.2.6, 4.2.2.7, 4.2.2.8, 4.2.2.9, 4.2.2.10, the

optimization problem of chemotherapy is   

Which implies that = P. E Q .E R. E S .E

  

Where  

Subject to the constraints



and the decision variables/parameters

4.2.4: Numerical Illustration and Analysis:

The above non-linear programming problem is solved with LINGO 8.0 and results

are presented in the tables from 4.2.3.1 to 4.2.3.8

Table 4.2.3.1:

Values of a1,b1,c1,d1,g1,a0,b0,c0,d0,g0 for vary i s of other

parameters. t=2; j=5; r=4; s =5; N0=5500000; M0=970000; MU=58000; ML=47000;

NU=10000000;WU=12000000;WL=10000000 N0=7500000

i Z a0 b0 d0 g0 c0 a1 b1 d1 g1 c1

1 72135960 0.00 0.0000 0.08 1000 117064 274357 9999.63 1000.00 0.19 0.9216

2 72176790 2.11 0.0000 1.06 12.33 1.1105 0.0000 0.00 51.78 6.72 1.7844

3 72205210 225.29 0.0006 224.02 15.26 1.1117 0.0000 0.00 56.65 7.74 1.7831

6 72334750 900.16 0.0041 899.87 24.75 0.0867 0.0000 0.00 9.21 3.12 1.7500

From table 4.2.3.1, it is observed that the objective function Z (drug efficacy) is an

s). When all the other

parameters are constant. It implies that increasing number of drug cycles increase the

drug efficiency. From the same table it is observed that the parameters in drug

absence namely a0, b0, c0, d0, g0 and the parameters in drug presence a1, b1, c1, d1 and

g1 behaves erratically and exhibiting the stochastic nature. 

  



Table 4.2.3.2:

Values of a1, b1, c1, d1, g1, a0, b0, c0, d0, g0 for vary s of

other parameters. t=2; i=4; r=4; s =5; N0=5500000; M0=970000; MU=58000;

ML=47000; NU=10000000; WU=12000000; WL=10000000

j Z a0 b0 d0 g0 c0 a1 b1 d1 g1 c1

5 72015790.00 874.3295 0.00241 873.4491 18.9463 4.6886 0 0 42.1913 5.9534 1.8053

6 67735500.00 599.1285 0.00094 598.7046 10.4214 2.2090 0 0 20.8232 2.0178 0.0201

7 67711140.00 599.1285 0.0009 598.7046 10.4214 2.2090 0 0 20.8231 2.0177 0.0201

8 67708820.00 599.1285 0.0009 598.7046 10.4214 2.2090 0 0 20.8234 2.0177 0.0201

From table 4.2.3.2, it is observed that drug efficacy Z is decreasing function of

number of drug administration spells per cycle (j) when other parameters are

constant. Hence it may be inferred that more number of drug administration spells

per cycle has adverse effect on drug efficacy. Further it is observed that all the

parameters i.e., arrival and departure rates during absence and presence of drug

exhibits pure stochasticity. 

Table 4.2.3.3:

Values of a1, b1, c1, d1, g1, a0, b0, c0, d0, g0 for varying of

other parameters. t=2; i=4; j=5; s=5; N0=5500000; M0=970000; MU=58000;

ML=47000; NU=10000000; WU=12000000; WL=10000000

r Z a0 b0 d0 g0 c0 a b d1 g1 c1

3 49012610.00 4.790342 0.00003 1.8062 31.2994 0.0000 0 0 132.4549 15.8680 1.8075

4 72615210.00 802.9884 0.00220 802.0177 18.9199 4.8127 0 0 41.9601 6.3769 1.8031

5 90514930.00 130.5484 0.00039 129.2273 18.3636 3.2590 0 0 50.1612 8.2105 1.9856

6 94513250.00 1.783129 0.00001 0.0000 23.3705 3.1537 0 0 51.2729 9.1166 0.7149



Table 4.2.3.4:

Values of a1, b1, c1, d1, g1, a0, b0, c0, d0, g0 for varyi of

other parameters.  t=2; i=4;   j=5; r=4; N0=5500000; M0=970000; MU=58000;

ML=47000; NU=10000000; WU=12000000; WL=10000000

s Z a0 b0 d0 g0 c0 a b1 d1 g1 c1

3 37119530.00 3.234889 0.00002 0.0000 33.4144 1.5185 0 0 106.0550 15.2742 0.0322

4 50115480.00 1104.418 0.00629 1104.372 32.6589 1.4031 0 0 3395.912 1.5232 1.3067

5 72615210.00 802.9884 0.00220 802.0177 18.9199 4.8127 0 0 41.9601 6.3769 1.8031

6 94913940.00 2.594364 0.00001 1.3813 14.4652 1.0711 0 0 54.3983 7.7278 2.0122

From tables 4.2.3.3 and 4.2.3.4, it is observed that Z is increasing function of r and s

respectively, when all the other parameters are constant. Hence it may be interpreted

as the increasing effectiveness of the drug is influenced by increase in number of

during vacations and also increasing number of time units with the drug vacation.

Further it is observed that varying values of drug vacation number exhibits the

stochasticity of all the other parameters during the absence and presence of drug. 

Table 4.2.3.5:

Values of a1, b1, c1, d1, g1, a0, b0, c0, d0, g0 s of

other parameters. t=2; i=4; j=5; r=4; s=5; M0=970000; MU=58000; ML=47000;

NU=10000000; NL=9000000; WU=12000000; WL=10000000; (N0=2500000;

NU=9900000)

N0 Z a0 b0 d0 g0 c0 a1 b1 d1 g1 c1

250000 71281920 0.0000 0.000 0.1036 0.0000 27100000 651.642 0.168 3.5719 0.158 0.3

350000 72000920 0.0000 0.000 0.2251 0.0005 3238650 3.8209 0.000 0.0000 0.000 0.6

550500 72015790 562.314 0.001 561.372 16.479 4.9029 0.0000 0.000 42.127 6.248 1.8

650000 72924070 1072.60 0.009 1071.52 60.127 3.9794 0.0000 0.000 33.931 1.360 0.0

Form table 4.2.3.5 it is observed that drug efficacy Z is increasing function of initial

number of normal cells when all the other parameters are constant. It implies that

increasing number initial number of normal cells increase drug efficacy. It is also

observe that from table 4.2.3.5 that the parameters during absence of drug a0, b0, c0,

d0, g0 and the parameters during presence of drug a1, b1, c1, d1, g1 are exhibited pure

stochasticity. 



Table 4.2.3.6:

Values of a1, b1, c1, d1, g1, a0, b0, c0, d0, g0 for varyin

of other parameters. t=2; i=4;   j=5; r=4; s=5; N0=5500000; M0=970000; MU=58000;

ML=47000; NL=9000000; WU=12000000; WL=10000000

NU Z a0 b0 d0 g0 c0 a b d1 g1 c1

1000100 72022980.00 548.1147 0.00096 547.3820 13.8231 4.8745 0 0 42.1981 5.2577 1.8052

1000200 72030170.00 907.4093 0.00379 906.4628 26.0427 4.0064 0 0 42.2050 6.2630 1.8051

1000300 72037360.00 605.5618 0.00140 604.6169 16.7226 4.9114 0 0 42.2119 6.2548 1.8049

1000400 72044550.00 0.733399 0.00000 0.0000 13.1667 5.3487 0 0 42.2187 5.2581 1.8048

1000500 72051740.00 0.9453435 0.00000 0.0000 15.0404 4.9643 0 0 42.2256 6.2552 1.8047

From table 4.2.3.6 it is observed that drug efficacy Z and the parameter d1 i.e., rate of

death of normal cell during presence of drug are increasing function of normal cells

upper limit when all the other parameters are constant. It implies that increasing

number of normal cells upper limit increase drug efficacy and rate of death of

normal cells during presence of chemotherapy. Also it is observed that the

parameters during absence of drug a0, b0, c0, d0, g0 and the parameters during

presence of drug a1, b1, c1, d1, g1 behaves erratically and exhibit stochastically. 

Table 4.2.3.7

Values of a1, b1, c1, d1, g1, a0, b0, c0, d0, g0 for varyin

of other parameters.  t=2; i=4;   j=5; r=4; s=5; N0=5500000; M0=970000; MU=58000;

ML=47000; WU=12000000; WL=10000000

NL NU Z a0 b0 d0 g0 c0 a b d1 g1 c1

900000 1000000 7201579 907.5908 0.005 907.328 34.950 0.093 0 0 13.080 2.909 1.673

900100 1000100 7202298 907.5000 0.005 907.237 34.951 0.093 0 0 13.068 2.909 1.673

900200 1000200 7203017 907.4093 0.005 907.146 34.951 0.093 0 0 13.056 2.909 1.673

900030 1000300 7203736 907.3186 0.005 907.056 34.952 0.093 0 0 13.044 2.909 1.673

From table 4.2.3.7 it is observe that drug efficacy Z, rate of death of mutant cells

during absence of drug g0 are increasing function of normal cells lower limit when

all the other parameters are constant. Hence it may be inferred that increasing

number of lower limit of normal cells increase the drug efficacy and rate of death of

mutant cells in the absence of drug. It is also observed from table 4.2.3.7 that

parameters during absence of drug a0, d0 and parameters during presence of drug d1,



c1 are decreasing function of increase in number of normal cells lower limit when all

the other parameters are constant.

Table 4.2.3.8

Values of a1, b1, c1, d1, g1, a0, b0, c0, d0, g0 for varyin values

of other parameters.  t=2; i=4;   j=5; r=4; s=5; N0=5500000; M0=970000; MU=58000;

ML=47000; NU=10000000; NL=9000000; WL=10000000

WU Z a0 b0 d0 g0 c0 a b d1 g1 c1

1200100 72015800.00 908.0446 0.00379 907.0987 26.0779 4.0915 0 0 42.1999 6.2622 1.8054

1200200 72015800.00 0.8876919 0.00000 0.1548 12.7701 4.9529 0 0 42.2086 5.2588 1.8055

1200300 72015810.00 908.9521 0.00294 908.2184 20.8765 3.8475 0 0 42.2173 5.2628 1.8055

1200400 72015820.00 909.4059 0.00261 908.7549 20.4395 5.3225 0 0 42.2260 4.8733 1.8056

1200500 72015830.00 882.9604 0.00266 882.0153 20.4852 4.8433 0 0 42.2346 6.2589 1.8057

From table 4.2.3.8 it is observed that drug efficacy Z and the parameter d1 i.e., rate of

death of normal cells during presence of drug are increasing functions of white blood

cells upper limit when all other parameters are constant. It implies that increasing

lower limit of white blood cells increases the efficacy and the parameter d1, rate of

normal cells during presence of drug. Further it is observed that parameters during

absence of drug a0, b0, c0, d0, g0 and parameters during presence of drug g1, c1 are

exhibiting pure stochasticity. 

4.3 PROGRAMMING PROBLEM FOR OPTIMAL DRUG ADMINI-
STRATION FOR TWO STAGE MUTANT CELL GROWTH:

4.3.1: Formulation of objective function:

Let be the effectiveness of killing of one premalignant cell by one unit drug

administration during cycle and spell Where = 1,2 , , the number of cycles

and = 1, 2,..., , the number of spells. Let be the number of units of drug doses

given in cycle and spell on one premalignant cell. Impact of units of drug

in killing of one premalignant cell during ith cycle and jth spell is  . Therefore

total impact of units of drug in killing of one premalignant cell during cycles

and spells is



Then total impact of drug during cycles and spells on average number of

premalignant is

where E ( ) is the average number of premalignant cells at a during drug

0 0 0=0

Let be the negative effectiveness of one unit of drug administration on one

premalignant cell during cycle and spell.Then negative impact of units of

drug on one premalignant cell is which implies total negative impact of

units for drug on one premalignant cell is 

Therefore total negative impact of drug during cycles and spells on average

number of premalignant is

Let denote the net effect of drug administration on average number of

premalignant cells during cycles and spells then

Which implies ; A

Let be the effectiveness of killing of one malignant cell during cycle and

spell of drug administration. Then effectiveness of units of drug on one

malignant cell is  . Which implies total effect of drug administration during

cycles and spells on one malignant cell is



The total impact of drug administration during cycles and spells on average

Where is the average number

0 0 0 0 0=0

Let be the negative impact factor of one unit of drug administration on one

malignant cell during cycle and spell. Then negative impact of units of

drug administration on one malignant cell is Therefore total negative impact

of drug administration during cycles and spells on one malignant cell is

Hence total negative impact of drug administration during cycles and spells on

average number of malignant is

Let denotes the net effect of drug administration on average number of malignant

cells then

Which implies that = B. E ( ), B

  

       

Let be the positive impact of drug vacation on day of cycle on one

premalignant cell. Where l-1, the number of cycles of drug vacation, =

of drug vacation. Let be the number of time units



of drug vacation. Then total positive impact of drug vacation on one premalignant

cell during number of time units of drug vacation is

Hence total positive impact of drug vacation on average number of premalignant

cells during number of time units in cycles and is

Where E ( ) denote the average number of premalignant during

1= 1 1=0

Let be the negative impact of drug vacation on one premalignant cell during  

day of cycle. Then total negative impact of drug vacation on one premalignant

cell during time units of drug in cycles and number of days is

Therefore the total negative impact of drug vacation on average number of

premalignant cells during time units of drug vacation in cycles and

number of days is,

Let denotes the net impact of drug vacation on average number of premalignant

cells during time units of drug in cycles and number of days then

Which implies that C 0  



Let be the positive impact of one unit time of drug vacation on one malignant

cell during day of cycle.  Then total positive impact of drug vacation on one

malignant cell during time units of drug vacation in cycles and number of

days is

Hence total positive impact of drug vacation on average number of malignant cells

during time units of drug vacation in cycles and number of days is

Where E(Mv) is the average number of mutant ce t during the drug

1 1= 1 1= 1=0

Similarly let be the negative impact of drug vacation on one malignant cell,

then the negative impact of drug vacation on average number of malignant cells

during time units of drug vacation in cycles and number of days is

Let denote the net impact of drug vacation on average number of malignant cells

during time units of drug vacation in cycles and number of days is

Which implies that = D. E , D

If Z denote the objective function then the objective is to

Where are as given in the equations (4.3.1.5),(4.3.1.10),(4.3.1.15)

and(4.3.1.19)



4.3.2: Formulation of Constraints:

Let denote the loss of WBC for one unit of drug administration while targeting

one premalignant cell in cycle and spell. Since is the number of units of

drug doses administrated in cycle and spell, the total loss of WBC during

cycle and spell is . Therefore total loss of WBC during cycles and

spells of drug administration for targeting of killing one premalignant cell is

Then the total loss of WBC due to drug administration during cycles and spells

for targeting expected number of premalignant cells is

Let WU, WL be the desired optimal upper limit and lower healthy sizes of WBC

during which the drug administration will be suggested. Then the constraint of drug

administration with respect to WBC loss count on premalignant cells is, 

Let be the loss of WBC for one unit of drug administration while targeting a

malignant cell in cycle and spell. Then total loss of WBC for units of drug

doses administered in cycle and spell is . Therefore total loss of WBC

during cycles and spells while targeting in killing of one malignant cell is

Then the total loss of WBC due to drug administration during cycles and spells

for targeting expected number of premalignant cells is



Hence the constraint of drug administration with respect to WBC loss count on

malignant cells is, 

Therefore from the equations (4.3.2.3) and (4.3.2.6), the constraint of drug

administration with respect to WBC loss count on expected number of premalignant

cells and malignant cells is,

Let be the loss of WBC per unit time during  day of cycle of drug

vacation due to growth of one premalignant cell Where l-1, the number

of cycles, . Let be the number of time units

in day of cycle of drug vacation. Then total loss of WBC per unit time in

day of cycle is .  Hence total loss of WBC in cycles and number of

days on one premalignant cell is

The total loss of WBC during cycles and number of days on average number of

premalignant cells is   

Where E is the average number of premalignant cells during drug vacation at

Therefore the constraint of drug vacation with respect to WBC loss count is

Let be the loss of WBC per unit time during  day of cycle drug

vacation due to growth of one malignant cell. Then total loss of WBC per unit time



in day of cycle is . Hence total loss of WBC by cycles and

number of days of drug vacation on one malignant cell is

Therefore total loss of WBC in cycles and number of days of drug vacation on

average number of malignant cells is  

Therefore the constraint of drug vacation with respect to WBC loss count on average

number of malignant cells is,  

From equations (4.3.2.10) & (4.3.2.13) the constraint of drug vacation with respect

to WBC loss count is

Let NCL be the critical target limit on size of the premalignant cells when the

is less than or equal to . 

Which implies that

Let MCL be the critical target limit on size of the malignant cells when the expected

size of the malignant cells at time t

Which implies that 



4.3.3 Optimization problem of two stage mutant cell growth:

From equations 4.3.1.20, 4.3.2.7, 4.3.2.14

  



Where   

Subject to the constraints



                                                                              

and the decision parameters/variables

  



4.2.4: Numerical Illustration and Analysis:

The above non linear programming problem is solved with LINGO 8.0 and the

following results are obtained.

Table 4.3.3.1

Values of for varying values of i at fixed values of

other  parameters. t=2; j=5; r=3; s=5; N0=7600000; M0=970000; WU=20100000;

WL=1010000; NU=100000; NL=41000; MU=620000; ML=470000

i Z 0 0 0 0 0 1 1 1 1 1

1 1417783 0 3.75 0 0.1731 30 6.25 0 6.666667 14.30776 0

4 1417787 0 3.75 0 0.1582 30 6.25 0 6.666667 14.36709 0

5 1417790 0 3.75 0 0.1576 30 6.25 0 6.666667 14.3696 0

6 1417791 0 3.75 0 0.1734 30 6.25 0 6.666667 14.30625 0

From table 4.3.3.1, it is observed that the objective function Z (drug efficacy) is an

cycles of drug administration). It implies that the increasing number of drug cycles

increase the drug efficacy. From the same table it is observed that the parameters in

drug absence namely 0, 0, 0, 0, 0 and the parameters during drug presence 1,

1 1 1 1behaves erratically and exhibiting the stochastic nature. 

Table 4.3.3.2

Values of for varying values of j at fixed values of

other parameters. t=2; i=4; r=3; s=5; N0=7600000; M0=970000; WU=20100000;

WL=1010000; NU=100000; NL=41000; MU=620000; ML=470000

j Z 0 0 0 0 0 1 1 1 1 1

3 1417775 0 3.75 0 0.1660 30 6.25 0 30 14.33595 0

4 1417776 0 3.75 0 0.1769 30 6.25 0 30 14.29233 0

5 1417787 0 3.75 0 0.1582 30 6.25 0 30 14.36709 0

6 1417788 0 3.75 0 0.1778 30 6.25 0 30 14.28881 0

From table 4.3.3.2, it is observe that drug efficacy Z is in stochastic nature of the

function of number of drug administration spells per cycle (j) when all other



parameters are constant. Hence it may be inferred that more number of drug

administration spells per cycle have adverse effect on drug efficacy. Further it is

observed that all the parameters i.e., arrival and departure rates to and from

premalignant and malignant cells are exhibiting pure stochasticity. 

Table 4.3.3.3

Values of for varying values of r at fixed values of

other parameters. t=2; i=4; J=5; s=5; N0=7600000; M0=970000; WU=20100000;

WL=1010000; NU=100000; NL=41000; MU=620000; ML=470000

0 0 0 0 0 1 1 1 1 1

3 1417787 0 3.75 0 0.1194 30 6.25 0 30 14.52251 0

4 1347102 0 3.75 0 0.2080 30 6.25 0 30 14.16813 0

5 1260834 0 2.352119 0 0.0881 30 6.25 5.591523 30 14.64764 0

7 1109939 0 3.75 0 0.2731 30 6.25 0 30 13.90772 0

Table 4.3.3.4

Values of for varying values of s at fixed values of

other  parameters. t=2; i=4; J=5; r=3; N0=7600000; M0=970000; WU=20100000;

WL=1010000; NU=100000; NL=41000; MU=620000; ML=470000

s Z 0 0 0 0 0 1 1 1 1 1

2 1692356 0 3.00141 0 0.1636 30 6.25 3.770851 30 14.32244 0

3 1682972 0 3.08169 10 2.2163 6636789 6.25 2.673241 0 19.27589 0

4 1681144 0 3.579964 10 2.2605 5311113 6.25 0.680144 0 5.958031 0

5 1417787 0 3.75 0 0.1194 30 6.25 0 6.666667 14.52251 0

From tables 4.3.3.3 and 4.3.3.4 it is observed that drug efficacy Z is decreasing

function of r and s respectively, when all the other parameters are constant. Hence it

may be interpreted as the decreasing effectiveness of the drug is influenced by

increase in number of during vacations and also increasing number of time units

within the drug vacation. Further it is observed that varying values of drug vacation

number exhibits the stochasticity of all the other parameters during the drug presence

and absence.



Table 4.3.3.5

Values of for varying values of N0 at fixed values

of other parameters. t=2; i=4; J=5; r=3; s=5; M0=970000; WU=20100000;

WL=1010000; NU=100000; NL=41000; MU=620000; ML=470000

N0 Z 0 0 0 0 0 1 1 1 1 1

5500000 1417787 0 0.60195 0 0.0355 30 6.25 12.5922 6.666667 14.85787 0

5511000 1004353 25 0 0.329759 0.0688 30 0 15 6.446828 14.72466 0

5515000 1004316 25 0 0.328526 0.0686 30 0 15 6.44765 14.72568 0

5520000 1004269 25 0 0.329883 0.0689 30 0 15 6.446745 14.72454 0

5525000 1004219 25 0 0.334818 0.0699 30 0 15 6.443455 14.72041 0

Form table 4.2.3.5 it is observed that drug efficacy Z is decreasing function of initial

number of premalignant cells when all the other parameters are constant. It implies

that increasing number initial number of premalignant cells decrease drug efficacy. 

Further it is also observed that from same table that the parameters during absence of

drug 0, 0, 0, 0, 0 and the parameters during presence of drug are decreasing in

nature. 

Table 4.3.3.6

Values of for varying values of WU at fixed values

of other parameters. t=2; i=4; J=5; r=3; s=5; N0=7600000; WU=20100000;

WL=1010000; NU=100000; NL=41000; MU=620000; ML=470000

WU Z 0 0 0 0 0 1 1 1 1 1

20101000 1417861 0 3.75 0 0.1194 30 6.25 0 6.666667 14.52249 0

20102000 1417935 0 3.75 0 0.1194 30 6.25 0 6.666667 14.5225 0

20103000 1418009 0 3.75 0 0.1194 30 6.25 0 6.666667 14.5225 0

20104000 1418084 0 3.75 0 0.1193 30 6.25 0 6.666667 14.52262 0

20105000 1418158 0 3.75 0 0.1760 30 6.25 0 6.666667 14.29604 0

From table 4.3.3.6 it is observed that drug efficacy Z is decreasing function of initial

number of malignancy cells when all the other parameters are constant. It implies

that increasing number of initial number of malignancy cells decrease the drug

efficacy. It is also observed that time unit during absence of drug are increasing

function and presence of drug is in decreasing function.



Table 4.3.3.7

Values of for varying values of M0 at fixed values

of other parameters. t=2; i=4; J=5; r=3; s= 5; N0=7600000; M0=970000;

WL=1010000; NU=100000; NL=41000; MU=620000; ML=470000

M0 Z 0 0 0 0 0 1 1 1 1 1

951000 1417787 0 3.75 0 0.1390 30 6.25 0 6.666667 14.4438 0

962000 1417777 0 3.75 0 0.1749 30 6.25 0 6.666667 14.30021 0

965000 1417776 0 3.75 0 0.1774 30 6.25 0 6.666667 14.2906 0

974000 1417773 0 3.75 0 0.1810 30 6.25 0 6.666667 14.27603 0

From table 4.3.3.7 it is observe that drug efficacy Z is increasing function of white

blood cells upper limit when all the other parameters are constant. And the rate of 0

during the absence of drug is increasing and the rate of presence of drug 0 is

decreasing in nature. Further it is also observe that all the parameters during absence

and presence of drug are invariant of change when the number of white blood cells

upper limit are increasing. 

Table 4.3.3.8

Values of for varying values of WL at fixed values

of other parameters. t=2; i=4; J=5; r=3; s= 5; N0=7600000; M0=970000;

WU=20100000; NU=100000; NL=41000; MU=620000; ML=470000

WL Z 0 0 0 0 0 1 1 1 1 1

1011000 1417712 0 3.75 0 0.1194 30 6.25 0 6.666667 14.52244 0

1012000 1417638 0 3.75 0 0.1760 30 6.25 0 6.666667 14.29594 0

1013000 1417564 0 3.75 0 0.1194 30 6.25 0 6.666667 14.5225 0

1014000 1417490 0 3.75 0 0.1194 30 6.25 0 6.666667 14.52242 0

1015000 1417406 0 3.75 0 0.1762 30 6.25 0 6.666667 14.2954 0

From table 4.3.3.8 it is observed that drug efficacy Z is decreasing function of white

blood cells lower limit when all the other parameters are constant. Hence it may be

interpreted that more number of white blood cells is influenced the decrease the drug

efficacy. Further it is observed that all other parameters to and from the

premalignancy and malignancy cells are pure stochastic nature. 



Table 4.3.3.9

Values of for varying values of WL &NU at fixed

values of other parameters. t=2; i=4; J=5; r=3; s=5;   N0=7600000; M0=970000;

WU=20100000; NL=41000; MU=620000; ML=470000

WL NU Z 0 0 0 0 0 1 1 1 1 1

1010000 101000 1417787 0 3.75 0.0000 0.119373 30 6.25 0 6.66667 14.52251 0

1011000 102000 1417712 0 3.75 0.0000 0.119391 30 6.25 0 6.66667 14.52244 0

1012000 103000 1417638 0 3.75 0.0000 0.176016 30 6.25 0 6.66667 14.29594 0

1013000 104000 1417564 0 3.75 0.0000 0.119376 30 6.25 0 6.66667 14.5225 0

1014000 105000 1417490 0 3.75 0.0000 0.119394 30 6.25 0 6.66667 14.52242 0

From table 4.3.3.9 it is observed that the drug efficacy is a decreasing function of

upper limit number of premalignant cells when all other parameters are constant. It

implies that increasing the number of premalignant cells will decrease the drug

efficacy. Further it is observed that all parameters when the upper limit of number of

premalignant cells are increasing.  

Table 4.3.3.10

Values of for varying values of WU & NL at fixed

values of other parameters. t=2; i=4; J=5; r=3; s=5;   N0=7600000; M0=970000;

WL=1010000;   NU=100000; MU=620000; ML=470000

WU NL Z 0 0 0 0 0 1 1 1 1 1

20100000 42000 1417787 0 3.75 0.0000 0.119373 30 6.25 0 6.66667 14.52251 0

20101000 43000 1417861 0 3.75 0.0000 0.119377 30 6.25 0 6.66667 14.52249 0

20102000 44000 1417935 0 3.75 0.0000 0.119376 30 6.25 0 6.66667 14.5225 0

20103000 45000 1418009 0 3.75 0.0000 0.119374 30 6.25 0 6.66667 14.5225 0

From table 4.3.3.10 it is observed that the drug efficacy Z is increasing function of

lower limit of premalignant cells when all other parameters are constant. It implies

that increasing the number of premalignant cells will decrease the drug efficacy. 

Further it is observed that all parameters when the lower limit of number of

premalignant cells are increasing. 

  



Table 4.3.3.11

Values of for varying values of WL & MU at fixed

values of other parameters. t=2; i=4; J=5; r=3; s=5;   N0=7600000; M0=970000;

WU=20100000; NU=100000; NL=41000; ML=470000

WL MU Z 0 0 0 0 0 1 1 1 1 1

1010100 621000 1417779 0 3.75 0.0000 0.119382 30 6.25 0 6.66667 14.52247 0

1010200 622000 1417772 0 3.75 0.0000 0.119374 30 6.25 0 6.66667 14.52251 0

1010300 623000 1417755 0 3.75 0.0000 0.176104 30 6.25 0 6.66667 14.29558 0

1010400 624000 1417757 0 3.75 0.0000 0.176028 30 6.25 0 6.66667 14.29589 0

Table 4.3.3.12

Values of for varying values of WU & ML at fixed

values of other parameters. t=2; i=4; J=5; r=3; s= 5; N0=7600000; M0=970000;

WL=1010000;  NU=100000; NL=41000; MU=620000;

WU ML Z 0 0 0 0 0 1 1 1 1 1

20101000 471000 1417861 0 3.75 0.0000 0.181481 30 6.25 0 6.66667 14.27408 0

20102000 472000 1417935 0 3.75 0.0000 0.119376 30 6.25 0 6.66667 14.5225 0

20103000 473000 1418009 0 3.75 0.0000 0.119374 30 6.25 0 6.66667 14.5225 0

20104000 474000 1418084 0 3.75 0.0000 0.119345 30 6.25 0 6.66667 14.52262 0

20105000 475000 1418158 0 3.75 0.0000 0.175991 30 6.25 0 6.66667 14.29604 0

From table s 4.3.3.11 and 4.3.3.12 it is observed that the drug efficacy Z is

increasing function of lower limit of malignancy cells when all other parameters are

constant. It implies that increasing the number of malignancy cells will decrease the

drug efficacy. Further it is observed that all parameters when the lower limit of

number of malignancy cells are increasing. 



Chapter - 5

SUMMARY AND CONCLUSIONS

This study has developed stochastic optimization problems for optimal drug

administration after a thorough modeling of the tumor growth on stochasticity

assumptions. In the first part, a bi-variate stochastic model was developed for cancer

cell growth with an assumption that the growth and loss processes of normal and

mutant cells follows Poisson process. In order to observe the behaviour of the model

during chemotherapy, the model is extended for studying cancer cell growth in the

presence and absence of the drug. As chemotherapy is executed in cycles with

different intensified spells, the growth and loss rates of both normal and mutant cells

are considered as heterogeneous and follows Poisson process. The statistical

measures in terms of model parameters are derived such as means, covariances and

variances of both normal and mutant cells. In order to estimate the parameters of the

model a stochastic programming problem is formulated. The objective function for

maximizing the drug efficacy was formulated with decision parameters such as rates

of arrivals of normal cells, mutant cells, rate of transformation of normal cells to

mutant cells and the rates of deaths of normal and mutant cells. The objective

function has accommodated the above mentioned decision parameters in both drug

administration and drug vacation periods. The constraints were formulated by

considering the optimal loss of WBC, optimal minimum size of healthy and normal

cells, optimal targeted size of mutant cells during the period of chemotherapy.

Sensitivity of the model was analyzed through numerical data sets using

MATHCAD. Decision parameters are explored using LINGO software. All the

numerical values are thoroughly analyzed and the stochastic optimization model is

interpreted.

The book is organized in 5 chapters, chapter-1 deals with overview on cancer

problem, models importance in studying the cancer growth by reviewing the

literature from 1932 to 2010. A brief summary on stochastic models, mathematical

models and optimization models on cancer growth is made. Focus of thesis,

motivation of study is given by highlighting the current developed work and existing

gap in the thrust area of stochastic modeling of cancer cell growth.



Understanding about a disease like cancer requires much attention on conventional

means. Regarding the reasons for getting cancer, there are innumerable causes either

by physiological or by other external factors of the patient. Modeling cancer cell

growth using mathematical aspects is considered to be a conventional approach. 

Measuring severity of a cancer through estimation is possible when structural

mathematical model behind it is suitable due to physiological and environmental

factors. The problem of cancer cell growth has to be considered as stochastic rather

than deterministic. There is much literature evidence on modeling of cancer cell

growth using stochastic models. Stochastic models used to provide the basic frame

work for understanding and analyzing the natural phenomena behind the cancer

growth. A tumor is defined as mass of tissues formed as a result of inappropriate and

excessive proliferation of cells. The complexity in understanding and measuring the

tumor growth made it necessary to formulate and integrate the classical, 

mathematical and the real life statistical models. Describing the growth of tumor at

different levels is possible only when the construction of the model is rational. In

practice uncertainty prevails everywhere in various aspects of tumor growth. Hence

stochastic modeling will be the suitable option for formulating the cancer growth.

With Mayneord 1932 pioneering work on mathematical study for measuring the

tumor growth, several authors have developed different cancer cell growth models

with different assumptions. Those works have explained and analyzed the kinetics of

tumor growth.   Modeling of tumor growth has gained the importance due to the

scope of its uses in optimal drug administration. The growth and loss rates of both

normal and mutant cells are considered to be random variables due to the influence

of innumerable reasons. Conventional method of modeling the tumor growth

through mathematical means in the assumption of deterministic situation has shifted

its paradigm to stochastic modeling. Time dependency is an essential consideration

while observing the dynamics of tumor growth. The vital factors of tumor growth

process are spontaneous mutation, proliferation, growth and loss of the cell etc. 

Modeling cancer growth in a single environment has lost its significance and hence

there is a need of constructing it with heterogeneous environment. The behaviour of

growth and loss patterns of both normal and mutant cells have to be modeled with

stochasticity. 



Observing the literature, in most of the works they have considered the growth of

cancer in a homogeneous environment whereas the health status of the patient under

drug administration has to be considered as heterogeneous. The factors like

individual physiological, environmental and other extraneous condition lead to the

growth of cancer as not only heterogeneous but also time dependent. A Very few

work on development of stochastic models, optimal drug design and administration

is reported in the literature. In this thesis an attempt is made to fill the gap of

developing stochastic models as well as stochastic program optimization under

heterogeneity and time dependence in cancer growth. Our work is dedicated in three

domains namely (1) development of stochastic model under heterogeneous time

dependent Poisson process (2) Developing stochastic models for cancer related cell

(mutant, premalignant, malignant) growth under the drug administration and drug

recovery periods, (3) Developing stochastic optimization programming problem for

effective and optimal drug administration subject to monitoring the safe health

norms of the patient. Observing the cell Kinetics in tumor it is understand that

spontaneous mutation, proliferation of mutant cells, transformation of cells from one

stage to other stages like from normal to mutancy, from mutancy to pre-malignancy

and from pre-malignancy to malignancy and the loss processes of cell at every stage

are playing very important role in studying the growth behaviour, mostly regulated

by alleles of gene. 

In Chapter-2 we develop stochastic models for cancer growth with spontaneous

mutation and proliferation on normal and mutant cell. As an extension of this

section, a stochastic model for cancer growth during drug administration and drug

vacation periods is developed, in both the sections difference-differential equation

were developed by assuming linear bivariate Poisson process in cancer cell growth.

Statistical constants were derived by using probability generating function.

Sensitivity analysis of the model for both the sections is carried out. 

In section-I, we develop a bi-varaite stochastic model for normal and mutant cell

growth. The growth and loss rates processes of both mutant and normal cells are

assumed as Poisson parameters. Difference differential equations and cumulant

generating function are used for finding the statistical measures like expected

number of normal cells and mutant cells at time t . The variance number of normal

and mutant cells and also the covariance between normal cells and mutant cells are







mutant cells from mutant cells during the presence of drug ( . Expected number

cells from normal cells, expected number of mutant cells, covariance between

normal cells and mutant cells, variance of normal cells, variance of mutant cells are

decreasing functions of rate of death of normal cell during the absence of drug (

and during the presence of drug ( ; Expected number of normal cells, variance of

normal cells are invariant, expected number of mutant cells, covariance between

normal cells and mutant cells, variance of mutant cells are decreasing functions of

rate of death of mutant cells during the absence ( and presence of drug

Expected number of normal cells, expected number of mutant cells, covariance

between normal and mutant cells, variance of normal cells and variance of mutant

cells are decreasing functions of time (t) when all the other parameters are constant.

In chapter-3 we develop a two stage stochastic model for mutant cell growth

assuming the growth and loss processes of cancer cell growth are combination of

growth of premalignant and malignant cells. In this model we consider that mutant

cell is transformed into premalignant cell and then it will be converted into

malignant cell as a full-fledged cancerous cell. The rates of arrivals to the

premalignant and malignant stages from mutant stage and the death rates of

premalignant and malignant cells are assumed as bivaraite Poisson parameters. The

rate of conversion of premalignant cell to malignant cell is also a bivaraite Poisson

parameter. A bivariate time dependent Poisson process is developed from which the

necessary differential equations and statistical measures are derived. A similar model

is developed in the extension section when the patient is under chemotherapy,

exposed to drug administration and drug vacation. Statistical measures are derived

from joint probability function of premalignant and malignant cells using cummulant

generating function. While developing a two-stage model, it is assumed that the

growth and loss of premalignant and malignant cell population is a linear

combination of drug administration and drug vacation periods.

The sensitivity analysis is carried out based on the results obtained as per tables

3.2.4.1 to 3.2.4.8 and also from the tables 3.3.4.1 to. 3.3.4.14. From the tables it is

observed that expected number of premalignant cells, expected number of malignant

cells, variances of premalignant cells and malignant cells are increasing functions, 

covariance between premalignant and malignant cells are negative and decreasing

with respect to increase in the initial number of premalignant cells (N0); Expected







problem with an objective of maximizing the drug efficacy subject to minimum risk

or loss of WBC.  

In chapter-4 optimization problems for cancer chemotherapy are developed through

stochastic programming. The arrival and death rates of mutant and normal cells are

assumed as stochastic parameters and estimated them through the developed

stochastic optimization programming problem. The optimality of drug effectiveness

is studied and analyzed through a suitable data. An objective function for

maximizing the drug effectiveness is formulated by considering various inputs like

intensity of drug dose, times of drug administration, times of drug vacation, cycle

lengths of drug administration and drug vacation, loss of WBC and expected number

of existing premalignant and malignant cells etc. Constraints are also formulated by

considering upper and lower desired limits of premalignant cells, malignant cells,

WBC etc. Stochastic parameters namely arrival and death rates of premalignant and

malignant cells during drug vacation and drug administration are assumed as non-

negative.  

Stochastic models for cancer cell growth with spontaneous mutation and

proliferation are developed in Chapter-2. The model also considered the behaviour

of cancer cell growth under chemotherapy environment for drug administration and

drug vacation periods. A two stage stochastic model for cancer cell growth is

developed when a mutant cell has transformation of premalignant and malignant

cells is developed in Chapter-3. An extension model is developed for two stage

cancer growth when the patient is under chemotherapy. The statistical measures like

average number and variance number of different kinds of cells are derived in both

the models.

This programming problem is developed to explore the parameters/decision

variables like growth rates, death rates and the rate of transformation from one stage

to another stage. The aspects like number of units of drug per spell, number of spells

of drug administration per cycle, number of cycles for drug administration in a

chemotherapy, number of time units per unit of vacation, number of days in a drug

vacation, number of drug vacations during the total chemotherapy period are

considered in developing the objective function as well as constraints.





SCOPE FOR FURTHER RESEARCH:

In this thesis we have concentrated mostly on stochastic modeling of cancer cell

growth for normal and mutant cells, two stage mutant cell growth in general

environment as well as chemotherapy environments. While developing stochastic

programming problem for optional drug administration, the expected number of

normal and mutant cells, expected number of premalignant and malignant cells are

estimated through the method of moments. As there are limitations on method of

moments, the robustness of programming problem has to be verified with suitable

techniques. While estimating the parameters like the rates of growth, the rates of

transformations, the rates of deaths of different category of cells have to be estimated

with valid estimation techniques like method of maximum likelihood estimation.

Our work is mostly categorized under the theoretical development through which the

cancer cell growth can be understood on mathematical lines. Whereas these models

have to be made more accessible to the applied scientists working in health care

industry. As the complexity of the model and its relevance to the real life data,

cumbersome and heavy calculations require the attention of computer science

technologists to prepare suitable softwares. User friendly computer automation can

also be developed by embiding the developed mathematical models and suitable

computer programs.
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