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Preface

In this study the author has attempted to present some stochastic models for cancer

cell growth.   Research evidences reveals that Non-parametric approach of assessing the

cancer severity is the age old practice in which these studies have many limitations as they

are far from the accuracy and beyond the reach of real quantification.  Further, it allows

much ambiguity in assessment of disease behaviour. Whereas Mathematical studies in

Biological applications are gaining more importance due to their significant advantages.

Hence assessment of real situation through mathematical simulations is a suitable

alternative for handling biological problems. Applying the mathematical models for

measuring the cancer growth is one of such useful approaches.  Modeling on genetics and

Pathophysiology of cancer cell growth through mathematical techniques is attracting much

attention of researchers due to its multi disciplinary approaches with Biologists, 

Mathematicians, Statisticians, Computing Experts, etc.

As stochastic models are providing the basic frame work for analyzing the natural

phenomena of cancer growth, this study is stressed on modeling the biological aspects of

cancer disease with mathematical approaches.  Studies on tumor growth models have

gained interest due to their utility for optimal drug administration.  The vital processes of

tumor growth related with spontaneous mutation, proliferation process, loss process, etc of

the cells have to be assessed through suitable modeling. This study focused on developing

and analyzing some stochastic models for cancer cell growth in different environments of

tumor. 

The cell kinetics plays a vital role in the growth of tumors.  Usually the

spontaneous mutation and proliferation process of cells are random in nature.  Therefore

the growth of a tumor has to be analyzed through the mentioned behaviour of cells in the

tumor.  Many studies have proposed that the stochastic Models for the growth of mutant

cell population based on the assumption of growth rates of normal and mutant cells are

homogeneous.  However, it is interesting to note that the growth rates of normal and

mutant cells are not homogeneous as their proliferation processes are not same. Hence, 

the proliferation of normal and mutant cells is considered to be stochastic rather than

deterministic.   

The second chapter of the study consists of a Bivariate stochastic model for normal

and mutant cell growth under the assumption of the growth and loss processes of mutant

and normal cells are Poisson with different growth rates and loss rates. Difference
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differential equations are used to derive several statistical measures based on the

probability functions.  This model is extended with the assumption of mutant cell's

growth is much faster than the normal cell. Another stochastic model for mutant  and

normal cell growth when the patient is under chemotherapy is developed by assuming the

loss process of normal and mutant cells is the sum of natural loss and loss due to

chemotherapy.  These models are very useful for analyzing the tumor growth and to

administer the chemotherapy more effectively. 

Third chapter of the book consists of two stage stochastic model for a cancer cell

growth with the assumption of every malignant tumor will have the premalignant and

malignant clones.  A premalignant cell may either extinct without becoming a malignant

cell or it may take mutation and become a malignant cell.  The size of the malignant tumor

is heavily influenced by these growth kinetics of malignant cells, that make up the foci

within the foci.  This situation in the tumor growth is also modeled as another two stage

stochastic model with the assumption that the growth of premalignant cell, mutation and

loss of premalignant and malignant cells are random and follows Poisson processes.  

Chapter four of the book is on a stochastic model for the mutant cell growth under

chemotherapy. The situations of drug administration and drug vacations are modeled by

assuming the growth and loss processes of the cancer cells are Poisson with different

parameters for two stages of the patient. The probability of extinction of the tumor is

derived so as the average size and variances of cancer cells in the tumor are analyzed. It is

observed that the efficiency of the drug is directly linked with the extinction of the

malignant cells in the tumor.  This model will have significant utility for administering the

chemotherapy.  Summary presentation was given in the last chapter.  

The models with this study have lot of importance to the health caretakers for

implementing the optimal chemotherapy protocols. The complexity of the model and its

application in real time data with cumbersome data sets demands the speedy and accurate

calculations, which in turn increase the demand of computer technologists to prepare

suitable software.  User friendly computer automation may be developed by combining the

developed mathematical models and suitable computer programs. 

The author is indebted to his research supervisor, teacher and philosopher Prof. K. 

Srinivasa Rao, Dept. of Statistics, Andhra University, Vishakhapatnam, A.P., India for his

scintillating support, encouragement and continuous follow up on the refinements of this

study.  

Tirupathi Rao Padi
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CHAPTER -1

Introduction
1.1. OVERVIEW:

Mathematical studies in Biological applications is gaining its importance due to its

sharp edged advantage. The assessment of real situation with mathematical simulation is

the suitable alternative without disturbing the basic biological issues. Applying the

mathematical models for measuring the cancer growth is one of such useful approaches. It

is more useful in understanding the cancer dynamics. Several nonparametric approaches

are in practice to assess the problem severity. However, they have many limitations as

they are far from the accuracy and beyond the reach of real quantification.  Further it

allows much ambiguity in assessment of disease behaviour. Many significant works were

reported in quantifying the qualitative traits for measuring the eventual phenomena. 

Modeling the genetical issues and Pathophysiology of the cancer cell growth through

mathematical techniques has attracted the attention of the multi disciplinary approaches

with Biologists and Mathematicians, Statisticians, Computing Experts. This study has

dedicated to modeling the biological aspects cancer disease with mathematical approaches. 

The stochastic processes involved in growth and loss of cancer cells are obtained through

suitable assumptions and postulates.  

Cancer Pathophysiology:

Pathophysiology of cancer describes that most of the cancers are due to the genetic

structures and the disease processes characterized by uncontrolled growth and spread of

cells. Causing of cancer may be attributed with several unexplained reasons. Healthy and

normal behaved cells having specific size, growth pattern, function and structure may be

exposed to spontaneous mutation and ultimately they will be converted in to cancer

causing cells. These cancer cells differ from normal cells in several factors with respect to

their size, structure, function, growth rate, etc. These malignant cells will be beyond the

normal regulating control as observed with healthy cells. Further the cancer cells will

invade to adjacent structures and affect the related tissues and organs.  

The mutant cells may form metastasis in other areas of the body through the blood

circulation systems and further they will lose their ability to act like normal and healthy

cells. This inability leads to transform them as either benign cells or malignant cells. 

Benign neoplasm is made up of the same cell type as the original parent cell and they do
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not invade to the adjacent tissues. Whereas the malignant cells will be more vibrant in

forming their secondary cells and grow with faster rate by continuous and unending

proliferation. There are considerable differences in the growth rates of malignant tumors. 

Some tumors are very slow-growing, even in a malignant state, and are therefore removed

easily. Other tumors may grow slowly at first and then undergo change and continue to

grow at a rapid pace. Others tumor types may grow very rapidly throughout their entire

existence. Tumor growth is influenced by the factors like individual's immune system, 

growth rate of tumor, number of actively spreading tumor cells, etc. Hence, we may

describe that uncontrolled cell growth is a characteristic of cancer. 

Understanding the causing factors of cancer occurrence is a complex process. It is

linked with many factors to name a few, professional hazardous, unhealthy lifestyles and

practices, medical interventions, genetic traits, etc. The initiation of carcinogenesis occurs

will be observed when DNA is damaged or altered.   Genetic cancer is a susceptibility to a

small percentage of cancers and a primary cause of cancer is damage to a specific gene. If

the damaged gene is part of the genetic line, then the cancer can be inherited by

succeeding generations. Cancer also can be caused by Oncogenic viruses can affect DNA

or RNA, which infect normal cells and cause alterations in the cell's genetic material. 

These genetic alterations can cause specific types of malignant and benign cancers in

susceptible individuals by allowing uncontrolled growth in cells.  Cancer causing due to

genetic reasons require the attention of the researchers as the biological relations and

Pathophysiology issues can be understood with well defined scientific principles.    

Inherited cancers tend to occur earlier in life and typically cause multiple growths

in the same organ. Disorganization of cells shall indicate dysplasia. Dysplasia is a result of

chronic un healing among the organs. The initial level of dysplasia is referred as

Metaplasia and it is reversible. Epithelium of the respiratory tract where columnar

epithelial cells change into squamous epithelial cells is the most common type of

metaplasia.  Increase in the number of cells in a tissue or in a part of a tissue is referred as

Hyperplasia, and results in increased tissue size.  Normal hyperplasia is observed in the

tissue and increases during the healing of wound, bone fracture, formation of callus, etc.

Tumors are classified according to tumor node metastasis (TNM) Clinical

Classification System. Tumor (T) is classified as Carcinoma in situ, increasing size, local

extent, or both, of primary tumor, etc.   Regional lymph nodes include no metastasis and

increasing involvement of regional lymph nodes. The spread of cancer cells from the

primary site, or site of origin, is called metastasis. Cancer cells can spread throughout the
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body through the bloodstream, the lymphatic system, or through local invasion and

infiltration into surrounding tissues.  Metastasis includes no distant metastasis and distant

metastasis.   A multi step process in the progression of sequential accumulation of

mutations within tissue cells is referred as tumor genesis.  The cancer stem cell hypothesis

has enormous implications for cancer therapeutics and will target the rapidly dividing

differentiating cells that comprise the major bulk of tumors, often leading to significant

reduction in tumor size.  

If occurrence of cancer is as an epidemiology, it may be due to the reasons of

environmental issues and individual life styles. These cancers are usually observed during

the transitions of people from countries with low cancer rates migrated to countries with

high cancer rates.  we may observe variations in cancer rates in different geographical

locations of the same nation.  The staging of cancer is decided with the rate of growth and

the extent of the disease. It will help to know the treatment options to expect the life span

of the patient and to determine the severity of the disease. the factors that decide the stage

of cancer includes Location and size of the primary tumor;  Extent of lymph node

involvement; Presence or absence of metastasis and Type of tumor and the tumor-host

relationship

Cancer Measuring Models:  

Several mathematical models for measuring the spread and intensity of cancerous

growths have been developed, especially on solid tumors, in which growth primarily

comes from cellular proliferation. The invasiveness of gliomas, however, requires a

change in the concept to include cellular motility in addition to proliferative growth.    

Stochastic models provide the basis frame work for analyzing the natural phenomena.  In

many biological systems it is important to study the development and growth of tumors.  

A tumor a is mass of tissues formed as a result of abnormal, excessive and inappropriate

(purposeless) proliferation of cells.  Owing to the complex nature of growth process of

tumor it is necessary to formulate and integrate models that attempt to describe the growth

process at different levels.  Mayneord (1932) has pioneered the systematic mathematical

study of tumors.  Later several authors have developed various models for cancer cell

growth with various assumptions in order to analyse the growth kinetics of tumors.  One

of the potential string in developing these models is replacing some of the homogeneity

assumptions, where a more realistic nature can be employed.
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Tumor growth models gained interest due to their ready utility for optimal drug

administration.  So as to incorporate the natural phenomena, we have to consider the

growth process as stochastic rather than deterministic.  The vital processes of tumor

growth are spontaneous mutation, proliferation process and loss process of the cells.  

Along with several other assumptions, it is customary to assume that the mutation and

proliferation processes of normal and mutant cells are homogeneous.  This assumption is

valid only when we analyse the models under the single environmental for both normal

and mutant cells.  However in tumors, once the tumor is formed (in particular with cancer

cells) the growth and loss processes of normal and mutant cells are non-homogeneous

(heterogeneous).  In this study an attempt is made to fill the gap in this area of research by

developing and analyzing some stochastic models for cancer cell growth in different

environments of tumor. 

1.2 RESUME ON CANCER CELL GROWTH MODELS

This section has provided a brief review on some contributions on the modeling of

cancer cell growth in chronological order.  Several models have been developed for

understanding the origin and development of tumors. 

Mayneord (1932) Pioneered the study on growth of the tumor in volume through

the application of a differential equation model for the rat sarcoma.  Rashevsky (1945)

developed the mathematical models involving differential equations that deal with the

dynamic or time course variation of the cancer.  Iverson et al. (1950) studied the

mechanism of experimental carcinogenesis.  The probability distribution of latent period,

the lethality of applied carcinogenesis etc. were estimated through the stochastic theory.  

Arley et al. (1952) developed a model based on the one stage mutation hypothesis.  The

dose response relation in any one series characteristics by a fixed time pattern was fitted

by this model.  Kendall (1952) has developed a quantitative model for carcinogenesis

based on phenotypically delayed mutation. Armitage et al. (1957) developed a model for

two stage theory of carcinogenesis in relation to the age distribution of tumor cancer.  This

model is characterized by a deterministic assumption that the clone of first order mutants

grow in exponential form.  Neyman (1958) discussed the biological situations of cell

growth as a stochastic model and phenotypical delayed mutation process for a quantitative

theory of carcinogenesis. 

Kendall (1960) investigated the biological situation of cell growth as a birth and

death model considering a large population of normal cells subject to carcinogenic action.  
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The carcinogenic action was categorized in to four states.  He assumed that the birth and

death rates are constants.  Armitage et al.(1961) developed a stochastic model for

carcinogenesis and reviewed various mathematical models, which discussed the induction

period of carcinogenesis transition probability density per unit time for each tissue.  Laird

(1964) discussed the dynamic of growth of a tumor using Gompertz law.  Burton (1966)

studied the growth rate of solid tumors as a diffusion process.  Neyman et al. (1967) used a

linear birth and death process to describe tumor growth.  They considered the probabilities

of birth and death are constant and hence it is also density dependent. 

Simpson et al. (1970) investigated the experimental tumor system with cell kinetics

and growth curves.  They have computed the time required for tumor to pass from the

initial size referred as the first passage-time formula.  Sullivan et al. (1972) described the

kinetics of tumor growth and regression relations in Ig. G multiple myolema through

Gompertz law.  Wette et al. (1974) developed a stochastic model for growth of solid

tumors based on physical characteristics of the tumor.  This model leads to density

dependent stochastic process for the mean size of the tumor.  Bahrami et al. (1975) dealt

with the applications of engineering optimal control theory to investigate the drug  

regimen for reducing an exponential tumor cell populations.  Dubin (1976) formulated a

density dependent birth and death process to describe tumor growth subject to

immunological response.  The density dependence is due to a non-linear factor in the

is similar to the logistic growth law.

Swan et al. (1977) has utilized engineering optimal control theory for

chemotherapy problems involving a human tumor.  Steel (1977) studied various growth

kinetics of tumor through the logistic model and demonistrated the applicability of

Gompertz growth law of tumor growth.  Swan (1977) reviewed various mathematical

models regarding the tumors.  He described a method for obtaining the exact solution to

r breast

cancer to evaluate the benefits of screening for breast cancer, the hypothesis concerning

the age-specific incidence of the disease was considered.  The rate of disease progression, 

the tendency of the disease, etc. were studied.

Hanson et al. (1981) derived an asymptotic approximation to the first passage time

problem for singular diffusion population.  They have obtained a solution for density

dependent stochastic population.  Bartosynski (1981) developed a model on the

appearance times of metastases s a non-stationary poisson process and developed
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algorithm using probability density estimation, mortality measurements and discrete

maximum penalized likelihood approach.  Kang et al. (1982) considered a continuous

bilinear model in state space cell kinetics of a tumor cell population under the effects of

chemotherapy.  the time course behaviour of a Chinese Havster Overy (CHO) cell

population is simulated and an optimal strategy for cancer treatment is derived to balance

the effects on cancerous as well as normal tissues.  Hanson et al. (1982) derived a

stochastic model for tumor growth based on diffusion approximation of continuous time, 

density dependent branching process with a Gompertz growth law as the deterministic

part.

Coldman et al. (1983) developed a mathematical model of tumor resistance to

chemotherapy.  the probability of no resistant cell is utilized as a fundamental quality of

interest, and the effects of various therapeutic strategies on it are explored.  After

observing the application of various drugs, it was inferred that the simultaneous

administration of all available active agents is optimal where this is permissible.  Steven et

al. (1983) described a mathematical model of growth based on the kinetics of cell cycle.  

Intrinsic growth rate equations were derived and behaviour of model was characterized

based on animal tumor cell cycle kinetics data. 

Atkinson (1983) studied the growth rate of a cancerous tumor as a function of its

age.  An estimator for the growth function from data on size at detection is obtained and

applied to data on large series of cases of breast cancer, which indicates that the growth

function can be adequately described by exponential growth.  Chiang (1983) discussed the

theory of multistage carcinogenesis with a time dependent stochastic model.  He derived

the distribution of the time required for a given number of mutations and the probability of

developing neoplastic cells in a given interval of time. 

Serio (1984) studied a two-state stochastic model for carcinogenesis with time

dependent parameters.  Epidemiological characteristics of the cancer to the biological

evolution of the tissue are also studied.  Forbes et al. (1984) reviewed various

mathematical models of carcinogenesis, which provide an insight in to the consequences

of making certain biological assumptions.  They have suggested that it is appropriate to

select the simplest model.  Marco et al. (1984) developed a mathematical model, which

consists of a system of first order partial differential equations.  They investigated the

evolution of a homogeneous cell population under the action of mutagenic agents. 

Birkhead et al. (1984) studied a mathematical model relating tumor response under

repeated doses of a single cytotoxic agent to the presence and accumulation of phenotypic
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drug resistance.  They have presented an analytic expression for quantities like the

fractional tumor reduction effected by dose, the minimum tumor size achieved under

therapy etc. Dibrov et al. (1984) studied the development of chemotherapeutic protocols

with increased selectivity in killing malignant cells as opposed to normal cells.  They

considered the dynamics of a proliferating cell population under periodic treatment by a

phase specific agent. 

Kendal (1984) developed a model which relates the growth of tumors to the degree

of their cellular heterogeneity.  The growth rate is proportional to the logarithms of the

number of combinations of cellular states.  when the number of combinations of states is

inversely pro

growth is Gompetzian. 

Jushuachover et al. (1985) compared two types of stochastic models for the initial

growth of cancereous tumors.  In the first type, the random element enters via the initial

time of growth (or) via the initial size of the growth of clone.  Where as in second type

tumor differ from one another essentially via these growth rates.  Tan et al. (1985) derived

the probability distribution for the number of tumors and the incidence rates at the

experiments using two stage model, when an individual is continuously exposed to

environmental agents of cancer. 

Hiep (1985) derived a stochastic model of evolution of mutant sub populations

from stem cells in human tumor system.  The growth of mutants (both stem cell mutants

and overall mutation) due to mutation of tumor stem cells during growth is explored.  This

model relates the mutant stem cells and overall tumor mutant cell population sizes. 

Coldman et al. (1985) studied a stem cell compartment model to simulate the

growth of human tumors, which is used to explore the effects of cell differentiation and

loss on the development of spontaneous drug resistance.  According to them, the

probability that the resistant cell is independent of rate of cellular differentiation for one

drug and the probability, that the cell resistance is proportional to the rate of cellular

differentiation for more than one drug.  Kranz (1985) studied the effects of demographic

and environmental stochasticity on the qualitative behavior of mathematical model from

tumor immunology.  A stochastic differential equation whose solution is a limiting

diffusion process to a branching process with random environments is used.

Birkhead (1986) derived the transient solution of the simple linear birth and death

process subject to random mutation.  He investigated the curability of cancer under drug

treatment through this solution.  He also derived the expression relating to curability of the
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disease to increasing tumor size.  Jackson (1986) reviewed some applications of kinetic

simulation of multi enzyme networks to the study of antimetabolic drugs used as

anticancer agents.  Kinetic models consists of system of nonlinear differential equations

which describe changes in concentrations of cellular metabolites with respect to time.  

Drug sensitivity, drug resistance and drug intervals were estimated with the above

networks.  Coldman et al. (1986) presented a stochastic model for the chemotherapy of

experimental tumors.  They have derived the equations for the joint probability generating

function for the number of chemo-sensitive and chemo-resistant cells.  This model is

extended to two drugs and they have shown now the model can be used to make deduction

regarding the optimum scheduling of therapy. 

Marek et al. (1986) described a mathematical model to estimate the cell cycle

phase specific action of a new anticancer drug CI-921.  The estimate obtained is in the

form of a sequence of fraction of the cell flow blocked in successive sub compartments of

the cell cycle.  Adam (1986) developed a one-dimensional model of tumor tissue growth

in which the source of mitotic inhibitor is non0uniformly distributed within the tissue. 

Flehinger et al. (1987) developed a mathematical model of progression kinetics of

lung cancer in a periodically screened population.  They assumed that the development of

adenocarcinoma of lung is a stochastic process with two stages, say early stage and

advanced stage.  Various parameters like mean times, detection probabilities, confidence

region etc., were also estimated.  Kinsella (1987) fitted a linear multiple regression model

to a tumor time series.  The slope parameters are used to estimate the expected life time

extension / reduction as an unambiguous index of treatment effects. 

Moolgavkar et al. (1988) described the evolution of malignant cells in the tissue

and those malignant cells that arise from direct mutation from premalignant cells.  

Premalignant cells are generated from normal cells as a non homogeneous poisson process

which ignore birth and death of malignant cells.  Dinse (1988) described a regression

analysis that adjust for survival and allows different conditional death rates.  The methods

proposed provide a frame work for incorporating covariates, as well as for estimating the

Abundo et al. (1989) developed a stochastic model to study the problem of

inherent resistance by cell population.  When chemotherapeutic agents are used to control

tumor growth.  They have introduced stochastic differential equations and numerically

integrated to simulate expected response to the chemotherapeutic strategies as a function

of different parameters.  Dewanji et al. (1989) developed mathematical expressions for the
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number and size distribution of intermediate regions.  He defined a type-I premalignant

cells as one that has arisen by direct mutation from one of the normal cells, and a

premalignant clone as the collection of premalignant cells descended from a single type-I

premalignant cell, not counting the dead or differentiated cells. 

Michelson et al. (1989) developed a stochastic analogue to a deterministic model

describing sub population emergence in heterogeneous tumors.  They have also described

a finite element approach for the numerical solution to the Fokker plank or forward

kolmogorov equation.  The results of the simulation supported the stochastic model, as the

basic dynamics of its deterministic counterpart. 

Chiang et al. (1989) studied a stochastic model of survival distributions, where the

exposure to toxic materials in the environment and his biological reaction to toxin

absorbed.  They have given the formulae for the density function, the distribution function

and expectation of life time.  Tan et al. (1989) developed a non-homogeneous stochastic

model for drug resistance in Chemotherapy that permits killing resistant cells with

immunostimulation.  The probability of distribution of the number of resistant tumor cells, 

the probability of nonresistant cells, the expected value and cumulants of the number of

resistant tumor cells are derived.

Adam et al. (1989) studied two mathematical models for the control of the growth

of a tumor by diffusion of mitotic inhibitor.  The inhibitor production rate is taken to be

uniform in a necrotic core for the first model and in the non-necrotic region for the second

model.  Regions of stable and unstable growths are determined and conclusions are drawn

about the limiting peripheral widths of stable tissue growth for both models. 

Martin et al. (1990) discussed an optimal parameter selection model of cancer

chemotherapy which describes the treatment of tumor over a fixed period of time by the

repeated administration of a single drug.  The model constructed a regimen that minimize

the tumor population by satisfying the constrains of the drug toxicity and intermediate

tumor size.  Murray (1990) investigated some models of cancer chemotherapy problems

where the normal cell population must be maintained above a lower limit and a measure of

total drug used is bounded as a limit of toxicity.  Swan (1990) reviewed various ways in

which optimal control theory interacts with cancer chemotherapy.  he classified the models

into three broad areas, namely (i) miscellaneous growth kinetic models (ii) cell cycle

models and (iii) the other models.  Designs of better chemotherapy strategies are also

suggested.
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Dewanji et al. (1991) developed two-mutation model for carcinogenesis which

postulated two-state limiting events for malignant transformation as a generalization of the

recessive oncogenesis hypothesis.  As per this model, inactivation of homogeneous tumor

suppresser genes leads to cancer.  This model has been used for the analysis of altered

heptic foci in rodents. 

Martin (1992) investigated three types of tumor growth models namely, gompertz, 

Logistic and Exponential.  They observed that the tumor burden during therapy have a

little impact on survival time for exponential and logistic growth tumors.  Tusnday (1992)

discussed various mathematical methods of cancer research as (i) understanding the

description of processes leading to cancer such as investigation of non-erogodic sequence

of stochastic automate (ii) diagnostic methods for estimating the growth factors by

algorithms and (iii) follow up studies using the Keplan Meier estimator and Cox

regressions for one dimensional and multi-dimensional survival distributions. 

Dewanji et al. (1993) developed a new method of estimating tumorgenic potency

that takes into account information on survival and cause of death.  They described the

time to tumor occurrence (X) the time to death as a result of tumor occurrence (Y) and the

time to death from causes other than tumor occurrence (Z) through the Weibull

distribution. 

Asselain et al. (1994) studied a biological based parametric model of tumor latency

with an evidence of the contra lateral breast cancer recurrence is most likely to originate

from subclinical tumor foci that pre exist at the time of treatment.  Biswas et al. (1994)

measured the relative risks and longevity of a group of cancer patients using Weibull

model whose parameters are the functions of the covariates based on randomly censored

data.  Mathisca et al. (1994) developed a mathematical theory based on a two-mutation

model for carcinogenesis, which is used for the quantitative analysis of premalignant

clones induced by specific carcinogenesis. 

Byrne et al. (1995) derived a model for the evolution of spherically symmetric and

non necrotic tumor.  They have studied the effect of nutrients and inhibitors on the

existence and stability of time dependent solution.  They have also discussed the

implications of the model for the treatment of cancer and suggested that non-trivial

solution is stable and the trivial solution is non stable.  Duffy et al. (1995) developed a two

parameter markov chain model to explicitly estimate the preclinical incidence rate ( 1) and

the rate of transition from preclinical to clinical state ( 2).  They have also proposed an
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estimate of sensitivity based on the estimated parameters of the markoiv process.  Carriere

(1995) studied an identifiability theorem in the theory of dependent competing risks.  He

has discussed the modeling of dependence with copila functions and they have also

calculated the survival probabilities after cancer is removed by solving a system of non

linear differential equations. 

Little (1995) studied some generalizations of the two mutation carcinogenesis

model of Moolgavkar, Venzon & Knudson and the multi stage model of Armitage & Doll.  

He has shown that process of cell division is governed by the parameters   death or

additional mutation of the penultimate stage are subjected to perturbation and there are

relatively large fluctuations in the hazard function for carcinogenesis for the model.  

Morell et al. (1995) used a non-linear mixed effects model to describe longitudinal

changes in prostate specific antigen (PSA) in men before their prostate cancers were

detected clinically through a piece wise model.  The time at which the PSA levels change

from non-linear to exponential could be estimated by including random terms that allow

each subject to have his own transition time. 

Milklavcic et al. (1995) developed a mathematical model in which the

pharmacokinetic model was extended and transformed to the level of macroscopic

biologically detectable effect.  They have used Gompertz equation for modeling.  The

effect of bleomycin on tumor growth was obtained by introducing the influential

parameters. 

Ying et al. (1995) studied a model for tumor development and discussed the

identifiability of parameters in the model.  They have combined the results of tests for

each marginal tumor incidence rate to develop stimulataneous tests of all marginal tumor

incidences.  Jam et al. (1995) developed a stochastic model for one, two and three stage

malignant transformations for embryonic and adult mice to study the influence of mutation

rate, number of stages required for transformations and number of stem cells at risk on the

kinetics of spontaneous appearance of malignant tumors. 

Venzon & Knudson and generalized to lymphatic leukemia incidence data.  Both Acute

Lymphatic Leukemia (ALL) and Chronic Lymphatic Leukemia (CLL) were fitted by the

model of mutation.  These two mutation models are such that first mutation rate and the

susceptible stem cell population vary rapidly with age. 

Alexander et al. (1997) developed a stochastic model of spontaneous

carcinogenesis to allow for a simple pattern of tumor growth kinetics.  They have
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discussed a method of estimating numerical characteristics of unobservable stage of

carcinogenesis from data on tumor size at detection.  They assumed that a tumor becomes

detectable when its size attain some threshold level, which treated as a random variable.  

The model yields a parametric family of joint distribution for tumor size and age at

detection.  Hanin et al. (1997) discussed the distribution of tumor size at detection derived

within the frame work of a stochastic model of carcinogenesis.  They have considered two

versions of the model with reference to (i) spontaneous and (ii) induced carcinogenesis

having the asymptotic behaviour. 

Chen et al. (1997) derived a mover-stayer mixture of markov chain models with

the complication that movers were unobservable because tumors were excised on

diagnosis.  They have used a Quasi likelihood method for estimation. 

Zheng (1998a, 1998b) suggested a method to compute the hazard function for the

multistage carcinogenesis model, based on the Kolmogorov forward equation, which

highlights the interplay of the forward equation, the backward characteristic method.  He

also discussed the advantages and disadvantages of the forward and backward equations

are equivalent.  He also reports that as far as the survival and hazard functions are

concerned, all three models given by Kendall (1960).  He also discussed some of the

implications within the context of the two stage models. 

Xu et al. (1998) developed a model by making the hazard function for detecting a

metastatic cancer a constant.  Two quantities were considered to study the relationship

between the size of primary cancers and the occurrence of metastages, they are (i) the

distribution of tumor size at the point of metastatic transition, and (ii) the probability that

detectable metastases are present when cancer comes to medical attention.  They have

proposed an estimator of the tumor size distribution at metastases and the result is applied

to a set of colorectal cancer data.  Chen et al. (1998) considered a stochastic model with

exponential components to describe the phase-III cancer clinical trials data.  They

presented the relationship between the hazard ratio of disease free survival (DFS) for an

active treatment versus a control treatment and the cumulative hazard ratio of survival for

the same two treatments. 

  

1.3 FOCUS OF THE STUDY

With the brief review given in the section 1.2, it is clear that stochastic models are

more powerful in the study of cancer cell growth.  Starting from the pioneering work in

1932, by Meyneard much work has been reported in the literature regarding the tumor
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growth and its origin.  The works of Laird (1964).Burton (1966), Simpson-Hersen and

Llyod (1970).  Sullivon and Salmon (1972) and Steel (1977) demonstrated the

applicability of the Gompertz growth law to tumor growth.  Their results are based upon

curve fitting with actual data. 

The Gompertz model is deterministic.  In real situations, tumor cells are subject to

irregular growth due to random events.  The irregular growth can result in tumor sizes that

are different from those predicted by the deterministic model.  The irregular growth of

tumor appears to be the rule rather than exception. 

To account for the irregular growth stochastic models of tumor growth have been

introduced particularly in the models of cancer cells. Iverson and Arley (1950) described

the growth of transformed cell, a progenitor of a tumor, by a pure linear birth process. In

this model, the probability of a birth is a constant, which is analogous to a constant

specific growth rate and hence a density independent model.  Kendall (1960), Neyman and

Scott (1967) used a linear birth and death process to describe tumor growth.  Their model

used constant birth and death probabilities and hence also density independent.  Wette, 

Katz and Rodin (1974) developed a stochastic model for growth of solid tumors based

upon the physical characteristics of the tumor.  This leads to a density dependent

stochastic process for the mean tumor sizes.  Dubin (1976) formulated a density dependent

birth and death process to describe the tumor growth subject to immunological response.  

He used various approximations to obtain information about the process.  Swan (1977)

Charles Tier (1982) developed a stochastic model for tumor growth which is the diffusion

limit of a continuous time density dependent branching process. 

Dewanji et al. (1989, 1991) have developed stochastic model for cancer risk

assessment through the number and size of the malignant clones with the assumption that

once a malignant was generated, it gave rise with probability 1 to a malignant tumor after

a suitable lag time.  However to take the explicit account of growth kinetics of malignant

cells, that are of cells that makeup the foci within the foci.  They have also developed

another stochastic model by incorporation a birth-death process for malignant cells.  

Birkhead (1986) developed a stochastic model using the linear birth and death process

with random spontaneous mutation by considering tumor cells are assumed to proliferate

by division and may lost to the population. 

A close look into the cell kinetics of tumor reveals that the spontaneous mutation, 

proliferation and loss processes play a dominant role for the growth and development of
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tumor.  The mutation and proliferation process can be described as follows.  The normal

cell can be divided into two normal cells (or) a normal cell can be divided into a normal

and mutant cell (or) a mutant cell may be divided into two mutant cells (or) a normal cell

may be lost (or) a mutant may be lost in a small time interval.  It is also evident that the

growth rates of normal and mutant cells are not homogeneous due to recessive

oncogenesis hypothesis, according to which inactivation of both alleles of a specific genes

leads to cancer.  So in order to analyse the tumor growth more close to reality, it is needed

to develop a density dependent stochastic model with heterogeneous (non-homogeneous)

growth and loss rates for normal and mutant cells. 

In this study, an attempt is made to fill this gap in this area of research.  The First

part of the study deals with development of a bivariate stochastic model for a cancer cell

growth with the assumption that the growth and loss processes of normal and mutant cells

are all poisson with different rates.  This model is extended to incorporate the receissive

oncognesis hypothesis by assuming that the growth processes of mutant cells is a sum of

natural growth and growth due to inactivation of both alleles due to specific genes.  In

order to analyse the drug efficiency in cancer chemotherapy, another stochastic model is

developed with the assumption that the loss process of both normal and mutant cells is a

sum of two processes namely, due to natural loss and loss due to chemotherapy.  Using the

difference differential equations, the joint probability density function of the normal and

cells, the variability of the number of normal and mutant cells and the covariance between

the number of normal cells and number of mutant cells are obtained explicitly as function

of time.  Another variation in these models is considered by developing a two stage

stochastic model for malignant cells.  Once a malignant cell was generated, the malignant

cell may become extinct without mutation or may divide into mutant cells and then it

become extinct.  So there are two stages attributable to the malignant cells.  The joint

distribution of the number of malignant cells in both stages is derived in order to obtain

duration in the tumor are also obtained and analysed.  The various characteristics of this

model are derived and analysed.

Cancer chemotherapy is generally prescribed on cyclic basis.  When an anti cancer

drug is induced to the body, both normal and mutant cells are killed.  The white blood

cells count falls to low levels and care is needed to evaluate the status of the patient.  If the

outcome is not favorable, life threatening fever can develop.  An interval of time is
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specified, during which the patient can (hopefully) recover.  But, the tumor will also grow.  

At the end of this recovery period the cycle of chemotherapy is usually begins again.  In

order to have affective administration of chemotherapy, this situation is modeled through

developing a stochastic model for mutant cell growth under chemotherapy.  using the

difference differential equation, the Laplace transformations of the tumor size probabilities

in both states of the patients namely, under recovery and under chemotherapy are

obtained.  Assuming the recovery period follows an exponential distribution, the mean and

variance of the tumor size and the probability of extinction of the tumor are obtained under

the equilibrium conditions. 

These models are very useful for understanding the origin and development of

malignant tumors and also useful for effective administration of chemotherapy.  These

models also include some of the earlier models as particular cases for specific or limiting

values of the parameters. The study also focused on  development of stochastic models for

cancer growth. The statistical measures like average number of normal cells, average

number of mutant cells, variances of normal and mutant cells, covariance between number

of normal and mutant cells are derived through the developed model.  

1.4 ORGANIZATION OF THE BOOK

This study is presented into five chapters.  The chapter wise outline of the book is

as follows.  Chapter one of the book is to give a brief resume on previous research on

cancer cell growth models.  A brief introduction of the problem, the motivation of the

present work are also given.  The short description on the organization of the chapters is

presented. Chapter two is on the development and analysis of stochastic models with

heterogeneous growth rates and loss rates for normal and mutant cells under spontaneous

mutation, proliferation and loss processes.  The recessive oncogenesis hypothesis is also

incorporated in the model.  Another bivariate model for normal and mutant cells is

developed and analyzed with the assumption that the loss due to drug administration.  The

various characteristics of the models are derived and analyzed under transient conditions.

Chapter three is devoted to study the two stage stochastic models for malignant cells.  The

joint probability generating functions of number of malignant cells in both states are

derived and analyzed.  The duration of the malignant cell in the tumor is analysed through

deriving the survival probability.  The mean and variance of the tumor size are also

obtained and analysed. Chapter four is concerned with the development and analysis of

the stochastic model for malignant cell growth under chemotherapy.  The Laplace
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transformations of the tumor size distribution when the patient is under recovery and

chemotherapy are derived and analysed.  The mean and variance of the tumor size and the

probability of extinction of the tumor are derived under equilibrium conditions. Chapter

five is to summarized the results obtained in the earlier chapters with conclusions.  The

scope for further study in this area of research is also mentioned.
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Chapter 2

Stochastic Model for Tumor Growth with Spontaneous
Mutation and Proliferation

2.1 INTRODUCTION

The cell kinetics plays a vital role in the growth of tumors.  The spontaneous

mutation and proliferation process of cells are random in nature.  The growth of a tumor

can be analyzed through the nature of spontaneous mutation and proliferation of cells in

the tumor.  Several authors have developed stochastic Models for the growth of mutant

cell population with the assumption that the growth rates of normal and mutant cells are

homogeneous.  However it is interesting to note that the growth rates of normal and

mutant cells are not homogeneous, since the proliferation of normal and mutant cells are

not homogenous, since the proliferation of normal and mutant cells is effected by various

factors.  In order to analyse the tumor growth, a Bivariate stochastic model for normal and

mutant cell growth with heterogeneous growth and loss rates is needed.

In this chapter, a Bivariate stochastic model for normal and mutant cell growth is

developed with an assumption that the growth and loss processes of mutant and normal

cells are Poisson with different growth rates and loss rates. Using the difference

differential equations and the cumulant generating functions, the expected number of

normal and mutant cells at time t, the variability of the normal and mutant cells and the

covariance between normal and mutant cells are also derived and analyzed.  In section 3,

this model is extended by considering that the growth of mutant cells is much faster than

the normal cells, because of the fact that the growth of mutant cells is a sum of natural

growth and the growth due to inactivation of allele gene.  The Joint probability generating

function of no

analysed by deriving the various characteristics of the model.  In section 4, a stochastic

model for mutant  and normal cell growth when the patient is under chemotherapy is

developed by assuming that the loss process of normal and mutant cells is the sum of

natural loss and loss due to chemotherapy.  The Joint probability generating function for

the mutant and normal cells is derived by using the difference differential equations and

the drug sensitivity is also analyzed.  These models are very useful for analyzing the tumor

growth and to administer the chemotherapy more effectively. 
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2.2 STOCHASTIC MODEL FOR NORMAL AND MUTANT CELL GROWTH

WITH HETEROGENEITY

In this section, the author has considered the proliferation of both mutant and

normal cells can be approximated by stochastic processes.  It is assumed that the growth

process of the normal cell is Poisson with parameter b2.  The growth process of the mutant

cell is Poisson with param 1

to mutant cell respectively.  The loss process of normal and mutant cells are also Poisson

with parameters d1 and d2 respectively.  Also considered that the proliferation of cells are

independent.  With these assumptions, the postulates of the model are. 

1. The probability that the normal cell divides in to two normal cells during a small

2b h o h . 

2. The probability that a normal cell divides into one normal and one mutant cell

h o h . 

3. The probability that a mutant cell is divides into two mutant cells during a small

1b h o h . 

4. The probability that a normal

1d h o h . 

5.

2d h o h . 

6. The probability that there is no growth or loss of either normal cell or mutant cell

1 2 1 21 b b d d h o h . 

7. The probability that the occurrence of other than the above events during a small

8. The events in non-overlapping intervals of time are stochastically independent. 

Let Pn, m

n,m n,m 1 1 n,m 1 n 1,m 2P t h P t m 1 b h P t n h P t n 1 b h

n 1,m 1 n,m 1 2P t d n 1 h P t d m 1 h

n,m 1 2 1 2P t 1 mb n nb nd md h o h ; m,n 1           (2.2.1)

1,0 2,0 1 1,1 2 1,0 2 1P t h P t 2d h P t d h P t 1 b d h o h            (2.2.2)
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0,1 1,0 1 0,2 2 0,1 1 2P t h P t d h P t 2d h P t 1 b d h o h            (2.2.3)

0,0 1,0 1 0,1 2 0,0P t h P t d h P t d h P t o h               (2.2.4)

Therefore the difference differential equations of the model are  

n,m 1 2 1 2 n,m 1 n,m 1

d
P t mb n nb nd md P t m 1 b P t

dt
  

  n,m 1 2 n 1,m 1 n 1,mn P t b n 1 P t d n 1 P t

  2 n,m 1m 1 d P t ;    m 1,n 1         (2.2.5)

1,0 2 1 1,0 1 2,0 2 1,1

d
P t b d P t 2d P t d P t

dt
          (2.2.6)

0,1 1 2 0,1 1 1, 1 2 0, 2

d
P t b d P t d P t 2d P t

dt
            (2.2.7)

0,0 1 1,0 2 0,1

d
P t d P t d P t

dt
              (2.2.8)

With the initial condition
0 0N ,MP 0 1

i.e. initially when the tumor is identified there are N0 normal cells and M0 mutant cells in

the tumor. 

Let P x, y; t be the Joint probability generating function of n,mP t . i.e. 

n n
n,m

m 0 n 0

P x, y; t x y P t             (2.2.9)

Multiplying the equations (2.2.5) to (2.2.8) with n nx y and summing over all m and n1 we

have

n m
1 2 1 2 n,m

m 1 n 1

d
P x, y; t mb n nb nd md x y P t

dt

  n m n m
1 n,m 1 n,m 1m 1 b x y P t n x y P t

  n m n m
2 n 1,m 1 n 1,mb n 1 x y P t d (n 1)x y P t

  n m
2 n,m 1 1 2,0 2 1,1m 1 d x y P t 2d xP t d xP t

  2 1 1,0 1 1,1 2 0,2b d xP t d yP t 2d yP t

  1 2 0,1 1 1,0 2 0,1b d yP t d P t d P t          (2.2.10)

Reorgansing the terms and after simplification the equation (2.2.10) becomes, 
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t2 n m 2 n m 1
1 n,m 1 n,m

m n m n

d
P x, y; t b y m 1 x y P , t y mx y P

dt

  t t

n m n 1 m
1 n 1,m n,m

m n m n

d n 1 x y P x nx y P

  t t

2 n 2 m n 1 m
2 n 1,m n,m

m n m n

b x n 1 x y P x nx y P

  t t

m 2 n m 1
2 n,m 1 n,m

m n m n

d x m y P y mx y P

  t t

n 1 m 1 n 1 m

n,m 1 n,m
m n m n

xy nx y P x nx y P         (2.2.11)

Further simplification of the equation (2.2.11), will give

2
1

d
P x, y; t b y P x, y; t y P x, y; t

dt y y
  

  1d P x, y; t x P x, y; t
x x

  2
2b x P x, y; t x P x, y; t

x x

  2d P x, y; t y P x, y; t
y y

  xy P x, y; t x P x, y; t
x x

           (2.2.12)

This implies that

2
2 1 2 1P x, y; t x b x y d b d P x, y; t

x

  2
1 1 2 2b y b d y d P x, y; t

y
           (2.2.13)

We can obtain the characteristics of the model by using the joint cumulant

generating function of n,mP t .  Taking ux e and vy e and denoting K U,V; t as the

Joint Cumulant generating function of n,mP t , the equation (2.2.13) gives  

u v u
2 1 2 1K u, v; t b e d b e d e K u, v; t

t u

  v v
1 1 2 2b e b d d e K u, v; t

v
           (2.2.14)
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Let i, jm t denote the moments of order i, j

Then the differential equations governing i, jm t are obtained as  

1,0 2 1 1,0m t b d m t
t

               (2.2.15)

0,1 1,0 1 2 0,1m t m t b d m t
t

      (2.2.16)

2,0 2 1 1,0 2 1 2,0m t b d m t 2 b d m t
t

            (2.2.17)

1,1 2 1 1 2 1,1 2,0m t b d b d m t m t
t

            (2.2.18)

0,2 1,1 1,0 1 2 0,1 1 2 0,2m t 2 m t m t b d m t 2 b d m t
t

(2.2.19)

From the equation (2.2.15) we have

2 1b d t
1,0 0m t N e               (2.2.20)

Substituting (2.2.20) in the equation (2.2.16), we get

2 1b d t
0,1 2 1 0,1 0

d
m t d b m t N e

dt
      (2.2.21)

Solving the equation (2.2.21), we get

2 1 1 2

1 2

b d t b d t
b d t0 0

0,1 0
2 2 1 1 1 1 2 2

N e N e
m t M e

d b b d d b b d
                   (2.2.22)

On simplification the equation (2.2.22) become

2 1 1 2 1 2b d t b d t b d t
0,1 0m t A e e M e

;
Where 0

2 2 1 1

N
A

d b b d
        (2.2.23)

Consider the equation (2.2.17) and substituting the equation (2.2.20) in (2.2.17), we have

2 1b d t
2,0 1 2 2,0 2 1 0

d
m t 2 d b m t b d N e

dt
           (2.2.24)

Solving the equation (2.2.24), we get

1 2 1 2d b t 2 d b t2 1 2 1
2,0 0 0

1 2 2 1

b d b d
m t N e N e

d b b d
          (2.2.25)

On simplification, the equation (2.2.25) become

2 1 2 1b d t b d t
2,0m t Be 1 e ; where 2 1

0
1 2

b d
B N

d b
           (2.2.26)

Consider the equation (2.2.18) and substituting the value of 2,0m t as in the equation

(2.2.26), we have
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2 1 2 1b d t b d t
1,1 1 2 1 2 1,1

d
m t d d b b m t Be 1 e

dt
           (2.2.27)

Solving the equation (2.2.27), we get
2 1

2 1

b d t
b d t2 1

1,1 0
1 2 2 1 2 2 1 1

b d 1 e
m t N e

d b d b b d b d

1 2 1 2b b d d t2 1 0

2 1 2 2 1 1

b d N
e

d b b d b d
            (2.2.28)

On simplification the equation (2.2.28), gives
2 1

2 1 1 2

b d t
b d t b d2 2 1 1 2 1

1,1
1 2

b d b d d b e
m t De e

d b

where 2 1 0

2 1 2 2 1 1

b d N
D

d b b d b d
            (2.2.29)

consider the equation (2.2.19) and substituting the values of 1,0 0,1m t ,m t and 1,1m t

as in the equations (2.2.20), (2.2.23) and (2.2.28) and solving it, we get

1 2 2 1 1 22 b d t b d t 2 d b t
0,2m t e E H I e 1 F e 1

  2 1 1 2 1 2b b d d t b d tG e 1 J K e 1

Where 0

2 2 1 1

N
A ;

d b d b
  2 1

0
1 2

b d
B N

d b

2 1 0

2 1 2 2 1 1

b d N
D ;

d b d b d b
2 2 1 1

1 2 2 1

2 D b d b d
E

d b b d

2 1
2

1 2

d b
F D ;

d b
  

1 2 1 2

2 D
G ;

b b d d 2 1

H ;
b d

1 2

2 1

A b d
I ;

b d
  2 2

1 2

A b d
J ;

b d
0

1 2

M
K

b d

From equations (2.2.20), (2.2.23), (2.2.26), (2.2.29) and (2.2.30) the values of 10m t ,

01m t , 20m t , 11m t and 02m t are computed for various values of the parameters

1 2 1 2 0 0,b ,b ,d ,d ; N ,M and presented in Table (2.1.)



27

 
 

T
A

B
L

E
2.

1:
 

 
T

he
va

lu
es

of
m

10
(t

),
 m

01
(t

),
 m

20
(t

),
 m

11
(t

),
 m

02
(t

)
fo

r
va

ri
ou

s
va

lu
es

of
th

e
pa

ra
m

et
er

s
b 1

b 2
d 1

d 2
M

0
N

0
t

m
10

(t
)

m
01

(t
)

m
11

(t
)

m
20

(t
)

m
02

(t
)

0.
05

0.
38

0.
02

1
0.

93
2

1.
43

5
10

5
0.

10
5

0.
04

2
0.

00
5

0.
10

9
0.

03
9

0.
29

  
  

  
  

  
  

  
  

0.
13

2
0.

02
8

  
1.

48
4

0.
64

  
  

  
  

  
  

  
  

0.
26

5
0.

06
4

  
7.

52
9

0.
98

  
  

  
  

  
  

  
  

0.
39

2
0.

09
8

  
17

.6
5

0.
05

0.
03

0.
43

0.
32

0.
93

5
10

5
73

.1
55

2.
63

1
17

.6
17

53
6.

30
9

7.
16

8x
10

-7

  
0.

42
  

  
  

  
  

  
  

4.
05

1
24

.0
53

  
0.

00
8

  
0.

53
  

  
  

  
  

  
  

4.
81

6
26

.7
04

  
0.

13
  

0.
68

  
  

  
  

  
  

  
6.

40
8

31
.1

89
  

0.
19

2
0.

95
0.

08
0.

43
0.

17
2

0.
23

5
10

5
36

.3
28

75
.5

04
33

8.
64

22
3.

16
8

15
4.

77
4

  
  

0.
58

4
  

  
  

  
  

78
.4

6
12

6.
28

7
1.

30
6x

10
3

98
5.

61
2

27
5.

12
5

  
  

0.
69

3
  

  
  

  
  

13
5.

31
2

18
6.

21
8

3.
38

5x
10

3
2.

81
5x

10
3

38
8.

83
1

  
  

0.
94

5
  

  
  

  
  

47
7.

03
3

48
5.

92
9

3.
10

5x
10

4
3.

21
9x

10
4

89
9.

71
0.

95
0.

08
1.

94
5

0.
34

2
0.

23
2

5
2

12
3.

40
1

66
.0

4
1.

98
6x

10
4

4.
16

9x
10

3
37

0.
97

  
  

  
  

  
  

10
  

24
6.

80
2

13
0.

60
1

3.
97

2x
10

3
8.

33
0x

10
3

87
2.

74
2

  
  

  
  

  
  

15
  

37
0.

20
3

19
5.

16
2

5.
95

7x
10

3
1.

25
1x

10
4

1.
37

5x
10

3

  
  

  
  

  
  

20
  

49
3.

60
3

25
9.

72
3

7.
94

3x
10

3
1.

66
8x

10
4

1.
87

6x
10

3

0.
46

0.
08

0.
94

5
0.

09
9

0.
23

2
5

2
4.

95
3

1.
87

4
0.

08
1.

91
6.

22
3

  
  

  
  

  
  

10
  

9.
90

6
2.

26
9

0.
16

3.
82

13
.0

27
  

  
  

  
  

  
15

  
14

.8
6

2.
66

4
0.

23
9

5.
73

19
.8

3
  

  
  

  
  

  
20

  
19

.8
13

3.
05

9
0.

31
9

7.
64

26
.6

34
0.

95
0.

08
1.

94
5

0.
34

2
0.

23
2

5
2

12
3.

40
1

66
.0

4
1.

98
0x

10
3

4.
16

9x
10

3
37

0.
97

  
  

  
  

  
  

  
4

3.
04

6x
10

3
1.

64
2x

10
3

1.
41

4x
10

0
2.

64
2x

10
0

3.
55

7x
10

3

  
  

  
  

  
  

  
6

7.
51

6x
10

4
4.

05
4x

10
4

8.
69

x1
08

1.
61

2x
10

9
2.

96
4x

10
4

  
  

  
  

  
  

  
8

1.
85

5x
10

0
1.

00
1x

10
0

5.
29

6x
10

11
9.

81
9x

10
11

2.
14

3x
10

5

0.
05

0.
08

0.
94

5
0.

09
9

0.
23

2
5

2
4.

95
3

1.
87

4
0.

08
1.

91
6.

22
3

  
  

  
  

  
  

  
4

4.
90

7
1.

77
7

0.
28

7
3.

76
6

7.
17

5
  

  
  

  
  

  
  

6
4.

86
1

1.
70

1
0.

58
3

5.
57

1
6.

14
4



28

b 1
b 2

d 1
d 2

M
0

N
0

t
m

10
(t

)
m

01
(t

)
m

11
(t

)
m

20
(t

)
m

02
(t

)
  

  
  

  
  

  
  

8
4.

81
5

1.
64

2
0.

94
1

7.
32

4
4.

64
2

0.
05

0.
08

0.
09

5
0.

09
9

0.
23

3
2

2
1.

98
1

2.
37

6
0.

03
2

0.
76

4
1.

19
8

  
  

  
  

  
  

  
4

1.
96

3
1.

91
3

0.
11

5
1.

50
7

1.
74

9
  

  
  

  
  

  
  

6
1.

94
4

1.
57

0.
23

3
2.

22
8

1.
73

6
  

  
  

  
  

  
  

8
1.

92
6

1.
31

4
0.

37
6

2.
92

9
1.

45
0.

95
0.

08
1.

94
5

0.
34

2
0.

23
5

10
5

3.
02

6x
10

4
1.

63
2x

10
4

7.
03

x1
07

1.
30

6x
10

8
2.

74
5x

10
4

  
  

  
0.

56
2

  
  

  
  

1.
00

7x
10

4
6.

21
1x

10
3

1.
12

8x
10

7
1.

83
7x

10
7

1.
34

x1
04

  
  

  
0.

83
4

  
  

  
  

2.
58

5x
10

3
1.

93
7x

10
3

1.
22

9x
10

6
1.

66
5x

10
6

5.
86

9x
10

3

  
  

  
0.

99
2

  
  

  
  

1.
17

3x
10

3
1.

00
4x

10
3

3.
50

1x
10

5
4.

20
6x

10
5

3.
79

2x
10

3

0.
05

0.
08

0.
09

5
0.

09
9

0.
23

5
10

5
9.

76
8

3.
94

3
0.

85
2

9.
35

11
.4

8
  

  
  

  
0.

49
  

  
  

  
1.

63
6

0.
60

9
  

0.
28

  
  

  
  

0.
69

  
  

  
  

0.
94

7
0.

48
7

  
0.

02
4

  
  

  
  

0.
74

  
  

  
  

0.
84

2
0.

46
2

  
0.

01
3

0.
95

0.
08

1.
94

5
0.

34
2

0.
23

2
5

2
12

3.
40

1
66

.0
4

1.
98

6x
10

3
4.

16
9x

10
3

37
0.

19
  

  
  

  
  

4
  

  
  

67
.5

18
  

  
36

9.
08

3
  

  
  

  
  

6
  

  
  

68
.9

97
  

  
36

7.
19

5
  

  
  

  
  

8
  

  
  

70
.4

76
  

  
36

5.
30

8
0.

05
0.

08
0.

09
5

0.
09

9
0.

23
2

5
2

4.
95

3
1.

87
4

0.
08

1.
91

6.
22

2
  

  
  

  
  

4
  

  
  

3.
35

2
  

  
4.

33
6

  
  

  
  

  
6

  
  

  
4.

83
1

  
  

2.
44

9
  

  
  

  
  

8
  

  
  

6.
31

  
  

0.
56

2
0.

05
0.

38
0.

02
1

0.
93

2
1.

43
50

10
5

0.
10

5
0.

27
1

0.
00

5
0.

10
9

0.
03

7
0.

29
  

  
  

  
  

  
  

  
0.

36
0.

02
8

  
1.

48
3

0.
64

  
  

  
  

  
  

  
  

0.
49

3
0.

06
4

  
7.

52
8

0.
98

  
  

  
  

  
  

  
  

0.
62

0.
09

8
  

17
.6

49



29

From the equations (2.2.20), (2.2.23) and Table (2.1) it is observed that the average

parameters are fixed.  We also observe that m0,1(t) at any given time is a decreasing

2 1,0 1 r parameters remain

fixed.  It is further observed that m0,1(t) at any given time is an increasing function of b1

and b2 when the other parameters are fixed.  It is also observed that m10(t) is independent

of b1.  The expected number of both mutant and normal cell populations are increasing

1 2 1 2b b d d .  It is further observed that the

expected number of both mutant and normal cell populations are decreasing functions of

1 2 1 2b b d d .  The expected number of mutant cells is an increasing

function of 0M when 1 2 1 2 1 2b b d d ; d d . The expected number of both mutant

cells and normal cells are increasing functions of N0 when other parameters remains fixed.  

The average 2 2b d

and 1 2b d respectively.  Similarly it is observed that the average number of mutant

cell is a decreasing function of t when 1 2b d for fixed values of d1 and d2. 

From the equation (2.2.26), (2.2.30) and Table (2.1), the variance of the number of

also observed that the variance of the number of mutant cells is a decreasing function of d2

when other parameters remain fixed. The variances of number of both normal and mutant

cells are increasing functions of b2 when other parameters are fixed.  The variances of

number of both normal a 1

parameters remain fixed.  The variance of number of normal cells is an increasing function

of b1 as the other parameter are fixed.  It is further observed that the variances of both

normal and 1 2 1 2b b d d .  The

2<d2 and the

2<d2. The

0

when the other parameters remain fixed.  The variance of the number of mutant cells is

0

From the equation (2.2.29) and table (2.1) we observe that the covariance between

the number of Normal and mutant cells is an increasing function of , b2 and b1 as the

other parameters remain fixed.  It is also observed that m11(t) is a decreasing function of d1
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and d2 as the other parameters remain fixed.  It is also observed that there is a positive

dependence between the number of normal and mutant cells.  It is further observed that the

covariance between the number of normal and mutant cells is an increasing fu

when 1 2 1 2b b d d . It is also observed that the covariance between the number of

the mutant cells and normal cells is an increasing function of N0as 0 0M N . 

2.3 STOCHASTIC MODEL FOR MUTANT CELL GROWTH WITH

INACTIVATION OF ALLELE GENES

In this chapter, the author has analyzed a stochastic model for normal and mutant

cell growth after the tumor is formed.  Once the tumor in formed, the proliferation of

mutant cells is much faster than the proliferation of normal cells.  Hence the proliferation

process of normal and mutant cells are not homogenous.  This can be modeled by

incorporating the additional proliferation process for the growth of the mutant cells which

may be due to inactivation of allele genes.  In this section we assume that the proliferation

processes of (i) the normal cell to two normal cells (ii) normal cell to one normal and one

mutant cell (iii) mutant cell to two mutant cells and (iv) the additional proliferation due to

inactivation of the allele are all poisson with parameters b- , , b and respectively.  The

these options, the postulates of the model are

1. The probability that a normal cell is divided into two normal cells during a small

- ) h + o (h). 

2. The probability that a normal cell divided into one normal and one mutant cell

h +o (h). 

3. The probability that one mutant cell divided into two mutant cells during a small

4. The probability that one normal cell is divided into one normal and one mutant cell

h + o (h). 

5. The probability that one mutant cell is divided into two mutant cells due to

h + o (h). 

6.

h + o (h). 

7. The probability that one mutant cell is dead

h + o (h). 
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8. The probability that the occurrence of other than the above events during a small

9. The occurrence of the events in non-over lapping interval of time are stochastically

independent. 

Let n,mP t

n,m n,m 1, n,m 1P t h P t b m 1 h P t nh

n 1,mP t b n 1 h

n 1,m n,m 1P t d n 1 h P t d m 1 h

2

n,mP t 1 m n b d h o h

n i,m i
i 0,1

P t o h ,   m,n 1               (2.3.1)

2

1,0 2,0 1,1 1,0P t h P t 2dh P t dh P t 1 b d h o h             (2.3.2)

2

0,1 1,1 0,2 0,1P t h P t dh P t 2dh P t 1 b d h o h             (2.3.3)

0,0 1,0 0,1 0,0P t h P t dh P t dh P t o h                (2.3.4)

Therefore the difference differential equations of the model are

n,m n,m n,m 1

d
P t m n b d P t m 1 b P t

dt

n,m 1 n 1,mnP t b n 1 P t

n 1,m n,m 1d n 1 P t m 1 dP t for m 1,n 1     (2.3.5)

1,0 1,0 2,0 1,1

d
P t b d P t 2dP t dP t

dt
      (2.3.6)

0,1 0,1 1,1 0,2

d
P t b d P t dP t 2dP t

dt
, and     (2.3.7)

0,0 1,0 0,1

d
P t dP t dP t

dt
                  (2.3.8)

Let P x, y; t be the Joint probability generating function of n,mP t , 

i.e n m
n,m

m 0 n 0

P x, y; t x y P t                  (2.3.9)

Multiplying the equations (2.3.5) to (2.3.8) by xn and ym and summing over all n and m, 

and after simplification we have

n m
n,m

m n

d
P x, y; t b d m n x y P t

dt
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  n m n m
n 1,m m 1,n

m n m n

d n 1 x y P t m 1 x y P t

  n m
n,m 1

m n

b m 1 x y P t

n m
n 1,m

m n

b n 1 x y P t

  n m
n 1,m

m n

nx y P t       (2.3.10)

This implies

d
P x, y; t b d y P x, y; t x P x, y; t

dt y x

  d P x, y; t P x, y; t
y x

  2 2b y P x, y; t b x P x, y; t
y x

  xy P x, y; t
x

            (2.3.11)

On simplification the equation (2.3.11) become

2d
P x, y; t b y b d y d P x, y; t

dt y

  2b x b d y x d P x, y; t
x

     (2.3.12)

auxiliary equations. 

2

dt dx

1 x b x y b d d 2

dy

y b y b d d   

(i)        (ii)     (iii)     

dp x, y; t

          
(2.3.13)

(iv)

Consider the relation (iv) in the equation (2.3.13), and on simplification, we have

1 P x, y; t where 1 is an integrating constant     (2.3.14)

Considering (i) and (iii) of the equations (2.3.13), we have. 
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2

dt dy

1 y b y b d d

Which implies that

1
dt dy

b y d y 1

The solution of this equations is  

b
1d b

b d
(b )y d

t log y 1
b

       (2.3.15)

On simplification the equation (2.3.15) become

b d t
2

b y d
e

1 y

Where, 2 is the integrating constant.            (2.3.16)

Consider the relations (ii) and (iii) in the equations (2.3.14) then  

22

dx dy

y b b d y dx b x y b d
        (2.3.17)

The equation (2.3.17) can be rewritten as

2 x y b dx bdx

dy y b d y 1 y b d y 1

d

y b d y 1
           (2.3.18)

The equation (2.3.18) is in the form of the Ricatti first order differential equation [Piaggio

(1950)].  x =y is a particular solution and the substitution of
1

x y
V y

in equation

(2.3.18) leads to

2 b y b d bdV
V

dy y b d y 1 y b d y 1
         (2.3.19)

Solving the equation (2.3.19), we get

A A
1B

b bV y b y d 1 y b d b y d
B 1

31 y dy

                 (2.3.20)
Where, 3 is the integrating constant.  Rearranging the equation (2.3.20), we have
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b b z A z
V y F 1 B,1, 1,

b d A b b

A
B

b
3 by d 1 y

Where
2

b b d d
A

b d

b d
B ;

b d
  

b y d
z

1 y

and F is the hypergeometric function            (2.3.21)

0 0

cells in the tumor and eliminating the integration constants from (2.3.15), (2.3.16) and

(2.3.21), then the general solution of the equation (2.3.9) after simplification is  

0Mt t t
t

t t

d z e d z e b ze
P x, y; t z e

b ze b ze b z

  

0N1A
B A t

b
b

t

1 b z
x e

x y b ze

Where b d and
b z b A z

z F 1 B,1, 1,
b d A b b

     (2.3.22)

using the equation (2.3.22) we can analyse the model behaviour.  The probability

by expanding the equation (2.3.22) and collecting the coefficient of xn and ym. 

1,0
x 1,y 1

m t P x, y; t
x

From equation (2.3.22), we have

b d t
1,0 0m t N e           (2.3.23)

The expected number

0,1

x 1,y 1

m t P x, y; t
y

From equation (2.3.23), we have

b d td t b d t
0,1 0m t A e e M e where, 0A N         (2.3.24)
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b d t b d t
2,0m t B.e 1 e where, 0

b d
B N

d b
         (2.3.25)

b d t b d t 2b 2d t t t
1,1m t De 1 e Ee e e

Where  
B B

D ;E
d b

and B is as given in the equation (2.3.25)   (2.3.26)

The var

2 b d t t d 2 b t
0,2m t e e 1 F H e 1 L 1

d 2b 2 t 2 b t d b tJ e 1 G e 1 M K e 1

Where  
2 D

L ;
d 2 b

  
2

F D

  G E;   
2

H E

  0N
I ;

2 d b
  0b d M

M
b d

  
b d

J A;
d 2b 2

b d
K A

d b

A is as given in the equation (2.3.24), B is a given in the equation (2.3.25) and D,

E are as given in the equation (2.3.26).            (2.3.27)

From equations (2.3.23) to (2.3.27) the values of

1,0 0,1 2,0 0,2m t , m t , m t ,m t and 1,1m t are computed for given values of

0 0, ,b,d,M , N and t are presented in table (2.2). 



36

 
 

T
A

B
L

E
2.

2

 
 

T
he

va
lu

es
of

m
10

(t
),

 m
20

(t
),

 m
11

(t
),

 m
02

(t
)

fo
r

va
ri

ou
s

va
lu

es
of

th
e

pa
ra

m
et

er
s

b
d

M
0

N
0

t
m

10
m

01
m

20
m

11
m

02

0.
04

3
0.

98
6

0.
13

4
0.

46
2

3
5

0.
74

3
14

5.
45

6
1.

26
9

19
.2

35
9.

46
6x

10
3

0.
25

3
  

  
  

  
  

  
2.

12
5

19
3.

74
7

7.
57

4
10

8.
75

5
1.

40
2x

10
4

0.
68

4
  

  
  

  
  

  
18

.3
3

46
2.

31
8

32
9.

69
6

3.
36

2x
10

3
5.

40
3x

10
4

0.
75

3
  

  
  

  
  

  
25

.8
8

57
5.

79
8

61
5.

21
8

5.
82

5x
10

3
6.

04
9x

10
4

0.
65

3
0.

19
6

0.
12

4
0.

86
2

3
5

2.
02

1
1.

77
5

13
.6

33
14

.6
71

91
.7

91
  

0.
48

4
  

  
  

  
  

  
2.

05
3

  
28

.0
94

99
0.

77
  

0.
74

9
  

  
  

  
  

  
33

.9
99

  
52

.4
41

4.
76

3x
10

3

  
0.

93
2

  
  

  
  

  
  

45
.5

88
  

83
.6

37
2.

00
9x

10
3

0.
27

5
0.

38
4

0.
12

4
1.

86
2

3
5

0.
30

5
2.

54
2

0.
75

3
0.

93
5

11
.1

01
  

  
0.

32
1

  
  

  
  

0.
81

8
8.

47
2

3.
32

2
5.

11
93

.5
77

  
  

0.
39

2
  

  
  

  
1.

16
6

12
.5

06
5.

74
4

9.
51

8
22

2.
24

5
  

  
0.

42
4

  
  

  
  

1.
36

8
14

.8
48

7.
37

1
12

.6
21

34
2.

71
5

0.
27

5
0.

38
4

0.
12

4
0.

86
2

3
5

0.
30

5
16

.1
72

0.
75

3
4.

02
8

25
8.

47
8

  
  

0.
43

8
  

  
  

  
1.

46
8

78
.8

24
8.

22
5

71
.5

95
4.

30
2x

10
3

  
  

0.
74

6
  

  
  

  
6.

84
6

36
9.

29
3

99
.8

26
1.

29
3x

10
3

7.
41

1x
10

4

  
  

0.
98

3
  

  
  

  
22

.3
9

1.
20

9x
10

3
76

1.
00

5
1.

24
3x

10
4

7.
08

4x
10

5

0.
17

5
0.

84
7

0.
84

5
0.

32
2

3
5

97
.8

7
6.

16
1x

10
3

5.
96

3x
10

3
1.

27
5x

10
5

1.
06

4x
10

7

  
  

  
0.

46
  

  
  

49
.5

8
3.

12
1x

10
3

2.
03

x1
03

3.
98

6x
10

4
3.

23
1x

10
6

  
  

  
0.

63
  

  
  

20
.9

8
1.

32
1x

10
3

53
3.

71
8

9.
13

6x
10

3
7.

22
1x

10
5

  
  

  
0.

84
  

  
  

7.
56

6
47

6.
28

6
11

5.
45

1.
60

8x
10

3
1.

24
3x

10
5

0.
12

8
0.

18
4

0.
13

5
0.

32
2

3
5

2.
21

11
.9

04
5.

57
5

4.
52

7
38

4.
97

6
  

  
  

0.
46

  
  

  
1.

12
6.

03
1

2.
56

9
1.

83
2

49
.5

  
  

  
0.

63
  

  
  

0.
47

4
2.

55
2

0.
96

6
0.

57
8

9.
63

7
  

  
  

0.
84

  
  

  
0.

17
1

0.
92

0.
30

9
0.

14
9

2.
17

3
0.

12
8

0.
18

4
0.

13
5

0.
84

2
3

1
1.

69
1

2.
89

9
1.

41
2

0.
20

3
15

.2
3

  
  

  
  

  
  

3
0.

53
8

1.
95

0.
84

5
0.

30
2

6.
03

5



37

b
d

M
0

N
0

t
m

10
m

01
m

20
m

11
m

02

  
  

  
  

  
  

5
0.

17
1

0.
91

7
0.

30
9

0.
14

9
2.

16
4

  
  

  
  

  
  

7
0.

05
4

0.
38

1
0.

10
2

0.
05

6
0.

85
0.

17
5

0.
84

7
0.

84
5

0.
32

2
3

1
6.

02
3

21
.8

65
11

.6
95

8.
55

6
49

.4
4

  
  

  
  

  
  

2
12

.0
9

98
.0

37
70

.6
23

15
3.

40
8

1.
98

5x
10

3

  
  

  
  

  
  

3
24

.2
8

39
5.

83
8

33
1.

82
1

1.
66

x1
03

3.
89

9x
10

4

  
  

  
  

  
  

4
48

.7
5

1.
56

5x
10

3
1.

43
2x

10
3

1.
51

2x
10

4
6.

60
5x

10
5

0.
17

5
0.

84
7

0.
84

5
0.

32
1

3
5

97
.8

7
5.

22
2x

10
3

5.
96

x1
03

1.
27

9x
10

5
9.

33
9x

10
6

  
  

  
  

2
  

  
  

6.
16

1x
10

3
  

  
1.

06
4x

10
7

  
  

  
  

3
  

  
  

7.
1x

10
3

  
  

1.
19

3x
10

7

  
  

  
  

4
  

  
  

8.
03

9x
10

3
  

  
1.

32
3x

10
7

0.
12

8
0.

14
9

0.
13

5
0.

84
1

3
5

0.
17

1
0.

84
2

0.
30

9
0.

14
9

2.
00

7
  

  
  

  
2

  
  

  
0.

91
7

  
  

2.
16

4
  

  
  

  
3

  
  

  
0.

99
3

  
  

2.
32

1
  

  
  

  
4

  
  

  
1.

06
9

  
  

2.
47

8
0.

12
8

0.
18

5
0.

13
5

0.
84

2
1

2
0.

31
8

1.
33

2
0.

41
5

0.
10

9
4.

14
7

  
  

  
  

  
2

  
0.

63
6

1.
95

2
0.

83
0.

21
8

7.
26

7
  

  
  

  
  

3
  

0.
95

4
2.

57
2

1.
24

5
0.

32
7

10
.3

87
  

  
  

  
  

4
  

1.
27

2
3.

19
1

1.
66

0.
43

6
13

.5
07

0.
17

5
0.

84
7

0.
84

5
0.

32
2

1
2

4.
03

1
53

.2
87

23
.5

41
51

.3
6

1.
1x

10
3

  
  

  
  

  
2

  
8.

06
2

75
.6

62
47

.0
82

10
2.

27
2

1.
54

2x
10

3

  
  

  
  

  
3

  
12

.0
9

98
.0

37
70

.6
23

15
3.

40
8

1.
98

5x
10

3

  
  

  
  

  
4

  
16

.1
2

12
0.

41
2

94
.1

65
20

4.
54

4
2.

42
7x

10
3



38

From the equations (2.3.23), (2.3.24) and from Table (2.2), we observe that

expected number of both normal and mutant cells at any given time are increasing

ameters remain fixed.  It is further observed that the

average number of both normal and mutant cells at any given time are decreasing

cells at a given time is an increasing function of .  It is also observed that both t
01m and

t
10m

observe that the average number of mutant cells and normal cells are increasing functions

of t, when b d and they are decreasing functions of time t when b d

.  The average number of mutant cells is an increasing function of M0.  The average

number of normal cells is an increasing function of N0 when other parameters remains

in the tumor are not influenced by .  The value of t
01m can be reduced by activating the

allele gene in the tumor. 

From the equations (2.3.25), (2.3.27) and table (2.2) we observe that the variances

other parameters remain fixed.  It is also observed that 02m t is a decreasing function of

b and 20m t

number of both no

when other parameters remain fixed.  It is further observed that the variances of number of

+ +b>d and they are

decre + +b)<d.  the variance of number of mutant cells is an

increasing function of M0 and the variances of number of both mutant and normal cells are

increasing functions of N0

From the equations (2.3.36) and table (2.2) we observe that the covariance between

11(t) is

nt

cells is positively increasing as the time increases for the given values of other parameters.  

We also observe that m11(t) is an increasing function of and m11(t) is a decreasing

+ +b)<d and an increasing function of t as ( + +b)>d.  It is further
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observed that the covariance between the number of normal cells and mutant cells is an

increasing function of N0 and not influenced by M0 when other parameter are fixed.  This

model includes the model given by Birkhead )1986) when 0.

2.4 STOCHASTIC MODEL FOR NORMAL AND MUTANT CELL GROWTH

UNDER CHEMOTHERAPY

In this section we develop a stochastic model for the growth of normal and mutant

cells when the patient is under chemotherapy.  In addition to the assumptions made in

section 3, here we assume that the loss process of the normal and mutant cells is a sum of

two loss processes, one is due to natural loss and the other is due to drug induction.  It is

also further assumed that the loss processes due to natural and due to drug are also poisson

differential equations of the model are

n,m n,m n,m 1

d
P t m n b d P t m 1 b P t

dt

  n,m 1 n 1,mnP t b n 1 P t

  n 1,m n,m 1d n 1 P t d m 1 P t ; m 1, n 1 (2.4.1)

1,0 1,0 2,0 1,1

d
P t b d P t 2 d P t d P t

dt
           (2.4.2)

0,1 0,1 1,1 0,2

d
P t b d P t 2 d P t 2 d P t

dt
        (2.4.3)

0,0 1,0 0,1

d
P t d P t d P t

dt
              (2.4.4)

With the boundary condition
0 0N ,MP 0 1

Let P x, y; t be the Joint probability generating function of n,mP t , 

n m
n,m

m 0 n 0

P x, y; t x y P t                (2.4.5)

Multiplying the equations (2.4.1) to (2.4.4) by n mx y

have
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d
P x, y; t b d y P x, y; t x P x, y; t

dt y x

d P x, y; t P x, y; t
y x

xy P x, y; t
x

2 2b x P x, y; t b y P x, y; t
x y

          (2.4.6)

Further simplification of the equation (2.4.6) gives

2d
P x, y; t b x y b d x d P x, y; t

dt x

  2b y b d y d P x, y; t
y

          (2.4.7)

Solving the equation (2.4.3) as done in section (2.3) we get, 

0Mt t t

t t

d ze d ze b ze
P x, y; t

b ze b ze b z

  

A
B A t

b
bt

t

1 b z
ze z e

x y b ze

Where  b d
2

b d b
A

b d

b y d
z

1 y
  

b d
B

b d

b z b
z ;

b d A

A z
F 1 B,1, 1,

b b

and F is a hypergeometric function               (2.4.8)

Using the equation (2.4.8), we can obtain the characteristics of the model.   

The expected number of Normal cells in the tumor at time t is   

b d t
1,0 0m t N e          (2.4.9)
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The expected number of mutan

b d t t t
0,1 0 0 0m t e N M e N e             (2.4.10)

The variability of the normal cells in the tumor at time t is  

d b t d b t
2,0 1m t A e 1 e ; 1 0

b d
A N

b d
         (2.4.11)

The variability of the mutant cells in t

d t b t b d t
0,2m t E H e e e

  b 2 d t b 2 t b te F e 1 G e 1

  d b tb d t d t d t te I 1 e Je e e

Where  

12 A D
E

b d b
; 1A

F
b

1 1A B
G

b
;    0N

H
d b b

0 0

b d
I N M

d
; 0

b d
J N

d

1

b d
B

b d
   D

d b

and A is as given in the equation (2.4.11)           (2.4.12)

The covariance between the number of normal cells and mutant cell is

2 b d tb d t 2 b d t
1,1 1 1m t A De e B e

where A1, B1 and D are as given in the equation (2.4.12).          (2.4.13)

Using equations (2.4.9) to (2.4.13) the values of 10 01m t , m t , 20 11m t ,m t

and 02m t are computed for given in values of the parameters and time t and are

presented in table (2.3). 
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From equations (2.4.9), (2.4.10) and table (2.3) we observe that the average

when other parameters remain fixed.  The average number of mutant cells is an increasing

function of M0 at a given time when other parameters are fixed.  Hence it is observed that, 

with the appropriate drug administration, the average number of mutant cells can reduced

by increasing the rate of death of mutant cells. 

From the equations (2.4.11); (2.4.12) and table (2.3) we observe that the variance

of number of mutant cells is an increasing function of the parameters , when other

parameters remain fixed.  The variance of the number of normal and mutant cells are

b d .  The variance of number of

mutant cells is an increasing function of M0 and both the variance are also increasing

functions of N0. 

From the equations (2.4.13) and table (2.3), we observe that the covariance

between the number of mutant cells and normal cells is a decreasing function of when

other parameters are fixed.  It is also observed that the covariance is a decreasing function

d

mutant cells is independent of M0 and it is an increasing function of N0. This model also

includes the model given in section 2.3 when 0.  Following heuristic arguments of

Goldie and Coldman (1979, 1983), here also we assume that normal cells corresponding to

drug sensitive cells and mutant cell to resistant cells to study the drug resistance in

chemotherapy.  When a tumor is treated with chemotherapy, the best that can be achieved

is complete eradication of sensitive cells.  The probability of cure is then equivalent to

probability of eventual extinction of the remaining resistant cells under the stochastic

process (Birkhead (1986)). 

sensitive to drug of choice them the probability of cure is given by

n

m/ n
m 0

d
C n, t P t

b
             (2.4.14)

Where, the conditional probability n,m
m/ n

n

P t
P t ;

P t
and

n
d

b
is the probability of

-death process.  nP t is the
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n

n

d
Coefficient of x in P x, , t

b
C n, t

P t
           (2.4.15)

d
P x, , t

b

0

0

N

M
d d

b x b b x G t
b b d

bd
b x b x b G t

b

Where  
2

d b d b t
G t exp

b
          (2.4.16)

If, for simplicity, we assume that the tumor has developed from a single sensitive cell

0 0N 1, M 0 then the recursive differentiation of (2.4.16) gives. Coefficient of

n d
x in P x, , t

b

2 n 1
d

b b
1 G tb

G t
d b d

b b G t G t
b b b

                             (2.4.17)
From (2.4.8), the marginal probability mass function of n is obtained as  

n 1
t

n 2 tt

e d b 1 e
P t

d b ed b e
          (2.4.18)

Where b d , since the sensitive cell population itself proliferates under a linear

birth-death process with parameters b- and d+ .  Substituting the equations (2.4.17) and
(2.4.18) in the equation (2.4.15), we have

2 n 1

n 1
t t

2 tt

d
b b

1 G tb
G t

d b d
b b G t G t

b b b
C n, t

e d b 1 e

d b ed b e

                  (2.4.19)

From the equation (2.4.19) and for given values of the parameters b, d, ,

the values of c (n,t) are computed and presented in table (2.4).  From the table it is

observed that the probability of survival of cell is influenced by the parameters and .  
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For a range of different mutation rates and the value of C (n, t) is a decreasing function

TABLE 2.4: VALUES OF C (n, t)
d b t c (n, t)

0.0194 0.0214 0.1294 0.0134 0.1562 1 0.04
          3 0.038
          5 0.037
          7 0.035
          9 0.034

0.0194 0.0214 0.1294 0.9741 0.9842 1 0.099
          3 0.079
          5 0.062
          7 0.05
          9 0.04

0.0194 0.9535 0.9932 0.0134 0.1562 1 0.233
          3 0.041
          5 0.006
          7 8.341x10-4

          9 1.163x10-4

0.9648 0.0214 0.1294 0.134 0.9842 1 0.127
          3 0.012
          5 0.001
          7 1.55x10-4

          9 1.989x10-5

0.9648 0.214 0.9932 0.0134 0.9842 1 0.268
          3 0.048
          5 0.007
          7 9.851x10-4

          9 1.372x10-4

0.9648 0.214 0.9932 0.0134 0.9842 1 0.268
          3 0.048
          5 0.007
          7 9.851x10-4

          9 1.372x10-4

0.9648 0.9535 0.1294 0.0134 0.1562 1 0.066
          3 0.001
          5 5.865x10-5

          7 4.787x10-6

          9 4.174x10-7

0.9648 0.9535 0.1294 0.9741 0.9842 1 0.08
          3 0.002
          5 3.754x10-5

          7 7.963x10-6

          9 1.689x10-8

0.9648 0.9535 0.9932 0.9741 0.9842 1 0.129
          3 0.003
          5 6.872x10-5

          7 1.483x10-6

          9 3.2x10-8
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CHAPTER 3
Two Stage Stochastic Model for Cancer Cell Growth  

3.1 INTRODUCTION

In this chapter  a two stage stochastic model is developed for cancer cell growth

with an assumption that in any malignant tumor, there will be premalignant and malignant

clones.  In the beginning a normal clone become premalignant and later on it becomes

malignant if it takes further proliferation.  A premalignant cell either may extinct without

becoming a malignant cell or it may take the mutation and become a malignant cell.  

which will become a malignant stage as in state B.  after some period of time both the

premalignant cells in state A and malignant cells in the state B will die and enter into to

For an effective administration of chemotherapy it is needed to estimate the

number of cells in state A as well as in state B.  for this sort of phenomenon a two stage

model for cancer cell growth is useful.  Here we assume that the growth process, the

mutation process and the loss process in both states are random.  Assuming poisson

process for growth, mutation and loss process, the joint probability distribution of the

number of cel

of cells in both the states and their variability are analyzed.  The cancer cell growth is also

analysed by deriving the probability of cell survival time in the tumor.  The expected

survival time of the cell in the tumor and its variability are also derived.  This model is

very useful for effective administration of chemotherapy.  The schematic diagram

representing the two stage cell growth is shown in Figure-1.

Fig.1 : Two Stage cell growth

Primalignant
State (A)

Malignant
State (B)

Death
Stage (C)

d1 d2
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3.2 JOINT DISTRIBUTION OF NUMBER OF CELLS IN BOTH STATES

In this section, the tumor size distribution is developed by deriving the joint

probability distribution of number of cells in state A and state B.  Let the growth process

of the malignant cells in the tumor is poison with parameters in the state A.  Let the

poison with parameters and d1 respectively.  Further assume that the transition from state

B to state C is also poison with parameter d2.  With this structure the postulates of the

model are, 

1)

s n h o h . 

2)

1nd h o h . 

3) The probability that a cell moves from state B to state C, when

2md h o h . 

4) The probability that there is a growth of premalignant cell in state A during the

small interval of time h is h o h

5) The probability that the occurrence of other than the above events during a small

6) The occurrence of events in non-overlapping intervals of time are stochastically

independent. 

Let Pn, m

n,m n,m 2 1P t h P t 1 md nd n h o h

  n 1,m n 1,m 1P t h o h P t n 1 d h o h

  n,m 1 2 n 1,m 1P t m 1 d o h P t n 1 h o h

  n 1,m 1
i 0,1

P t o h ;for m,n 1            (3.2.1)

0,0 0,0 1,0 1 0,1 2P t h P t 1 h o h P t d h o h P t d h o h

          (3.2.2)

1,0 1,0 1 2,0 1P t h P t 1 h d h h o h P t 2d h o h
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  1,1 2 0,0P t d h o h P t h o h            (3.2.3)

0,1 0,1 2 1,1 2P t h P 1 h d h o h P t d h o h

  1,0 0,2 2P t h o h P t d h o h            (3.2.4)

The difference differential equations of the model are

n,m 2 1 n,m n 1,m n 1,m 1

d
P t md nd n P t P t n 1 P t

dt

1 n 1,m 2 n,m 1n 1 d P t m 1 d P t
;

for n,m 1         (3.2.5)

0,0 0,0 1 1,0 2 0,1

d
P t P t d P t d P t

dt
             (3.2.6)

1,0 1 1,0 1 2,0 2 1,1 0,0

d
P t d P t 2d P t d P t p t

dt
          (3.2.7)

0,1 2 0,1 1 1,1 1,0 2 0,2

d
p t d p t d p t p t d p t

dt
  (3.2.8)

Let P (x, y;t) denotes the joint probability generating function of n,mp t , then

n n
n,m

n 0 m 0

P x, y; t x y p t ; x 1, y 1              (3.2.9)

Multiplying the equation (3.2.5) to (3.2.8) with nx and my and summing over all

n n n 1 m
n,m n 1,m

n m n m

d
P x, y; t x y p t xx y p t

dt

n m n 1 m
1 n 1,m n,m

n m n m

d n 1 x y p t nxx y p t

  n 1 m n m 1
n,m n 1,m 1

n m n m

nxx y p t n 1 x yy p t

  n m 1 n m
2 n,m n,m 1

n m n m

d mx yy p t m 1 x y p t           (3.2.10)

After simplification, we get

1 1 2

d p p
P x, y; t d x y d d 1 y p 1 x

dt x y

Which can be rearranged as

1 1 2

dp p p
d x y d d 1 y p x 1

dt x y
          (3.2.11)
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We

1 1 2

dt dx dy dp

1 d x y d d 1 y x 1 p

(i)  (ii)  (iii)  (iv)           (3.2.12)

Solving the system of equations (i), (ii), (iii) and (iv) in (3.2.12) we get the

arbitrary constants a, b, c as below

2d ta e y 1                (3.2.13)

1

2

d

d

1 2

b 1 x 1 y 1 y
d d

            (3.2.14)

and

1 1

c exp 1 x 1 y
d d

     (3.2.15)

Using the arbitrary constants given in equations (3.2.13), (3.2.14) and (3.3.15), the

general solutions of (3.2.11) can be obtained as

1 1

P x, y, t exp 1 x 1 y
d d

  
1

2
2

d
d t d

1 2

e 1 y 1 x 1 y 1 y
d d

         (3.2.16)

Where is an arbitrary function of two variables.  Therefore substituting the initial

condition
0 0N ,MP 0 1, we get

t
1

12

2

d2

2 1

d td t
2d t

1 1 1 2

d
1 x 1 e

d d
P x, y; t exp

d 1 y e e
1 y 1 e

d d d d

   
0

1 12

N

d t d td t

1 2

1 1 x e 1 y e e
d d

    
0

2
Md t1 1 y e               (3.2.17)

x 1

E N t P x, y; t
x
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This implies 1 1d t d t
0

1

E N t 1 e N e
d

            (3.2.18)

The average number o

y 1
E M t P x, y; t

y

This implies
12 2 d td t d t

0

1 2 1 2 1 2

N1 e e e
E M t

d d d d d d
  

   12 2d td t d t
0e e M e              (3.2.19)

The second order raw factorial moment for both stages A and B are obtained as

1 1

2
2 d t 2 d t

0 0
1

E N t N t 1 e N N 1 e
d

    1 1d t d t0

1

2 N
1 e e

d
             (3.2.20)

12 2

2
d td t d t

2

1 2 1 2

1 e e e
E M t M t

d d d d
     

   

12

2

d td t
0 0

1 2

N N 1 e e
d d

   
12

2 2

d td t
02d t d t

0 0 0
1 2

N e e
M M 1 e 2 M e

d d

   
12 2 d td t d t

1 2 1 2

1 e e e

d d d d

   
12

2

d td t

d t
0 0

1 2

e e
2N M e

d d
            (3.2.21)

The Product raw moment of first order is

12 2 d td t d t

1 2 1 2

1 e e e
E M t N t

d d d d
1 1d t d t

0
1

1 e N e
d

   12 d td t 0

1 2

N
e e

d d
1 1d t d t

0
1

N 1 e 1 e
d
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   1 1 22 d t d d td t0
0 0

1

M
e 1 e N M e

d
  (3.2.22)

The variance of the number of cells in state A is

22
V N t E N t N t E N t E N t     (3.2.23)

Substituting the equations (3.2.18) and (3.2.20) in equation (3.2.23) we have, 

1 1

2

d t 2 d t
0 0

1

V N t 1 e N N 1 e
d

1 1d t d t0

1

2 N
1 e e

d

  1 1d t d t
0

1

1 e N e
d

1 1d t d t
0

1

1 1 e N e
d

                    (3.2.24)

Similarly from equations (3.2.19) and (3.2.21), the variance of the number of malignant

cells in state B is obtained as

12 2

2
d td t d t

1 2 1 2

1 e e e
V M t

d d d d

12

2

d td t
0 0

1 2

N N 1 e e
d d

  
12

2 2

d td t

2d t d t
0 0 0 0

1 2

e e
M M 1 e 2N M e

d d
   

  
12

2

d td t
0 d t

0
1 2

N e e
2 M e

d d

12 2 d td t d t

1 2 1 2

1 e e e

d d d d

  
12 2 d td t d t

1 2 1 2

1 e e e

d d d d

12

2

d td t
0 d t

0
1 2

N e e
M e

d d

  
12 2 d td t d t

1 2 1 2

1 e e e
1

d d d d

12

2

d td t
0 d t

0
1 2

N e e
M e

d d

                   (3.2.25)

The covariance between the number of cells in state A and in State B is

Cov M t , N t E M t N t E M t .E N T      (3.2.26)
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By substituting the equations (3.2.18), (3.2.19) and (3.2.22) in the equation (3.2.26) we

have

12 2 d td t d t

1 2 1 2

1 e e e
Cov M t , N t

d d d d
1 1d t d t

0
1

1 e N e
d

12 d td t 0

1 2

N
e e

d d
1 1d t d t

0
1

N 1 e 1 e
d

1 1 22 d t d d td t0
0 0

1

M
e 1 e N M e

d

12 2 d td t d t

1 2 1 2

1 e e e

d d d d

12

2

d td t
0 d t

0
1 2

N e e
M e

d d

1 1d t d t
0

1

1 e N e
d

             (3.2.27)

For various values of 1t, , d , and d2 the values of E M t , E N t , V M t ,

V N t and COV M t , N t are computed and are given in the table (3.1). 



54

T
ab

le
3.

1:
V

al
ue

s
of

E
N

t
,E

M
t

,V
M

t
an

d
C

ov
M

t
,N

t
fo

r
di

ff
er

en
tv

al
ue

s
of

th
e

pa
ra

m
et

er
s

l
d 1

d 2
M

0
N

0
t

E
[N

(t
)]

E
[M

(t
)]

V
ar

. [
N

(t
)]

V
ar

. [
M

(t
)

C
O

V
(M

(t
),

 N
(t

)
0.

13
0.

18
8

0.
19

3
0.

01
10

10
5

6.
76

9
15

.3
96

2.
47

8
2.

87
8

-2
.0

19
  

  
  

0.
42

  
  

  
  

3.
34

4
  

2.
75

7
-0

.7
27

  
  

  
0.

83
  

  
  

  
1.

20
9

  
1.

09
8

-0
.3

62
  

  
  

1.
24

  
  

  
  

0.
67

9
  

0.
63

6
-0

.2
27

0.
49

0.
54

2
0.

19
3

0.
42

8
5

4
0.

89
9

2.
11

1
0.

88
5

1.
79

5
-0

.0
22

  
  

0.
38

4
  

  
  

  
0.

64
2

2.
45

1
0.

63
9

2.
09

3
-0

.0
15

  
  

0.
57

4
  

  
  

  
0.

49
4

2.
65

7
0.

49
4

2.
26

9
-0

.0
08

  
  

1.
14

5
  

  
  

  
0.

03
2.

94
6

0.
29

8
2.

52
2

-0
.0

00
9

0.
79

0.
02

0.
56

4
0.

66
7

9
13

2.
67

6
3.

94
9

2.
40

6
3.

20
3

-0
.4

08
  

0.
59

7
  

  
  

  
  

0.
93

5
2.

45
7

0.
92

6
2.

19
6

-0
.0

33
  

0.
79

6
  

  
  

  
  

0.
72

2
2.

20
1

0.
72

1
1.

98
5

-0
.0

15
  

1.
19

4
  

  
  

  
  

0.
49

2
1.

86
8

0.
49

2
1.

69
5

-0
.0

03
0.

13
0.

99
5

0.
78

3
0.

94
6

4
10

0.
00

8
0.

00
6

0.
00

8
0.

00
6

-5
.6

63
x1

012

0.
49

  
  

  
  

  
  

0.
27

7
0.

21
9

0.
27

7
0.

21
9

  
0.

79
  

  
  

  
  

  
0.

44
4

0.
35

0.
44

4
0.

35
  

1.
22

  
  

  
  

  
  

0.
68

3
0.

53
9

0.
68

3
0.

53
9

  
0.

66
1.

34
2

0.
21

3
0.

86
5

1
2

1.
00

2
0.

19
9

0.
84

1
0.

44
9

-0
.0

02
  

  
  

  
  

  
6

0.
13

4
0.

09
0.

13
4

0.
42

6
-1

.5
23

x1
07

  
  

  
  

  
  

10
0.

10
6

0.
05

8
0.

10
6

0.
42

6
-9

.7
8x

10
12

  
  

  
  

  
  

14
0.

10
5

0.
04

3
0.

10
5

0.
42

6
0

0.
66

0.
34

2
1.

21
3

0.
06

5
1

2
5.

78
0.

28
9

1.
41

3
0.

44
9

-0
.0

3
  

  
  

  
  

  
6

6.
35

6
0.

10
4

3.
66

6
0.

42
6

-4
.9

68
x1

056

  
  

  
  

  
  

10
6.

78
9

0.
06

4
5.

15
1

0.
42

6
-7

.7
14

x1
08

  
  

  
  

  
  

14
7.

12
7

0.
04

6
6.

13
0.

42
6

1.
19

x1
010

0.
82

1.
03

2
0.

43
2

0.
58

5
1

2
1.

70
9

0.
02

9
1.

20
6

0.
10

4
-0

.0
07

  
  

  
  

  
  

6
0.

20
7

0.
01

2
0.

20
2

0.
05

6
-2

.2
72

x1
06

  
  

  
  

  
  

10
0.

50
8

0.
00

7
0.

05
8

0.
05

6
-6

.3
72

x1
010

  
  

  
  

  
  

14
0.

04
3

0.
00

5
0.

04
3

0.
05

6
-1

.7
79

x1
013

0.
93

0.
74

2
0.

49
4

0.
13

11
10

2
1.

53
6

8.
52

2
1.

46
5

1.
93

-0
.2

6
  

  
  

  
  

12
  

1.
70

5
8.

52
3

1.
61

9
1.

93
1

-0
.3

12
  

  
  

  
  

14
  

1.
87

4
8.

52
4

1.
77

4
1.

93
2

-0
.3

63
  

  
  

  
  

16
  

2.
04

3
8.

52
5

1.
92

9
1.

93
3

-0
.4

15
0.

93
0.

44
2

0.
29

4
0.

13
5

5
4

1.
46

5
3

4.
52

1.
20

5
-0

.0
7

  
  

  
  

10
  

  
  

5.
99

7
  

1.
20

5
  

  
  

  
  

15
  

  
  

8.
99

3
  

3.
60

6
  



55

From equations (3.2.18), (3.2.19) and the table (3.1) we observe that the average

E N t and E M t are

decreasing functions of d1 when other parameters remain fixed.  It is further observed that

and

E N t is a decreasing function of , when other parameters remain fixed.  E M t is

a decreasing function of d2 and E N t is not influenced by d2.  So by suitable

2

reduce the tumor size.  The E N t is an increasing function of 0N for given values of

when 1 2d d and it is a decreasing function of t when 1 2d d for

given values of other parameters.  The average number of mutant cells is a decreasing

From equations (3.2.24), (3.2.25) and the table (3.1) we observe that the variances

of number o

V N t ,V M t are

1 hat

the variance of N t is a decreasing function of and V M t is an increasing function

of d2 when other parameters remain fixed.  It is observed that variability of number of

normal cells at a given time is an increasing function of N0 for fixed values of the

parameters and it is also noticed that V M t is an increasing function of M0, when

other parameters are fixed.  V N t and V M t are decreasing f

1 2d d . When other parameters are fixed V N t is an increasing function

V M t

normal and mutant cells is negative for given values of the parameters. 

The average total number of pre malignant and malignant cells in the tumor in both

states A and B is E L t E M t E N t      (3.2.28)

Substituting the values from equations (3.2.18) and (3.2.19) in the equation (3.2.28),  



56

1 1d t d t
0

1

E L t 1 e N e
d

12 2 d td t d t

1 2 1 2

1 e e e

d d d d

  
12

2

d td t
0 d t

0
1 2

N e e
M e

d d
             (3.2.29)

The variability of total number of cells in both the states is obtained from

V L t V M t V N t 2Cov M t , N t              (3.2.30)

By substituting the values from equations (3.2.24), (3.2.25) and (3.2.27) in the
equation (3.2.30) we have

1 1

2

d t 2 d t
0 0

1

V L t 1 e N N 1 e
d

1 1d t d t0

1

2 N
1 e e

d

1 1d t d t
0

1

1 e N e
d

1 1d t d t
0

1

1 1 e N e
d

12 2

2
d td t d t

1 2 1 2

1 e e e

d d d d
12

2

d td t
0 0

1 2

N N 1 e e
d d

12

2 2

d td t
02d t d t

0 0 0
1 2

N e e
M M 1 e 2 M e

d d

12 2 d td t d t

1 2 1 2

1 e e e

d d d d

12

2

d td t

d t
0 0

1 2

e e
2N M e

d d

12 2 d td t d t

1 2 1 2

B 1 e e e

d d d d

12

2

d td t
0 d t

0
1 2

N e e
M e

d d

12 2 d td t d t

1 2 1 2

1 e e e
1

d d d d

12

2

d td t
0 d t

0
1 2

N e e
M e

d d

12 2 d td t d t

1 2 1 2

1 e e e
2

d d d d
1 1d t d t

0
1

1 e N e
d

12 d td t
0

1 2

N e e

d d
1 1d t d t

0
1

1 e N 1 e
d

1 1 22 d t d d td t0
0 0

1

M
e 1 e N M e

d

1 1e t d t
0

1

2 1 e N e
d

12 2 d td t d t

1 2 1 2

1 e e e
[1

d d d d
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12

2

d , td t
0 d t

0
1 2

N e e
M e

d d
             (3.2.31)

For various values of t, , d1, , M0, N0, d2 the values of E L t and V L t

are computed and given in Table (3.2). 
TABLE 3.2: Values of E[L(t)], V[L(t)] for various values of the parameters

From the equation (3.2.29) and Table (3.2), we observe that the average total

of d2 when

d1 d2 M0 N0 T E[L(t)] V[L(t)]
0.93 0.02 0.78 0.24 10 15 5 12.629 35.565

      0.35       8.985 33.92
      0.47       6.701 32.45
      0.54       5.636 31.653

1.43 0.87 0.08 0.76 10 15 5 22.434 176.47
    0.23         22.59 130.15
    0.39         22.691 112.01
    0.54         22.759 107.62

1.43 0.12 0.03 0.46 2 5 5 7.909 106.4
  0.28           5.232 82.234
  0.33           4.656 78.426
  0.4           3.987 75.205

0.49 0.02 0.01 0.46 20 5 5 8.845 77.285
0.68             9.762 112.82
0.95             11.036 167.64
1.43             13.32 299.22
0.68 0.02 0.01 0.46 10 5 5 17.801 111.93

            8 17.926 187.42
            10 18.313 241.8
            12 18.763 299.22

0.95 0.02 0.01 0.46 20 10 5 15.551 124.93
        40     17.536 126.72
        60     19.521 128.51
        80     21.507 130.29

0.99 0.78 0.01 0.86 40 20 5 2.195 42.186
            7 1.449 103.85
            9 1.306 402.96
            10 1.287 852.92

0.99 0.78 0.01 0.86 2 4 5 1.355 21.225
          6   1.396 23.782
          8   1.437 26.34
          9   1.458 27.618

0.99 0.78 0.01 0.86 5 4 5 1.395 21.265
        6     1.409 21.278
        7     1.422 21.292
        8     1.436 21.305
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1 2d d .  It is also observed that E L t is an increasing function of as

1 2d d and 0 0M N . The mean number of cells in the tumor at any given time

ing function of d1 as 1 2d d .  It is further observed that

E L t 1 2d d when other parameters

remain fixed.  E L t is an increasing functio 1 2d d . 

From the equation (3.2.31) and Table (3.2) It is observed that the variability of

total number of cells in the tumor is an increasing function of .  It is further observed that

V L t is an increasing function of both M0 and N0. 

Taking t in the equation (3.2.17), we can obtain the equilibrium position of

the tumor model.  The probability generating function of premalignant and malignant cells

in the tumor at any arbitrary time is

1 1 2

P x, y; t exp x 1 y 1
d d d

     (3.2.32)

This implies that N(t) is asymptotically poison with Mean 1/ d and M(t) is

also asymptotically poison with Mean 1 2/ d d , where N(t) and M(t) are the number

of ce

asymptotically poison with Mean 2 1 2d / d d . 

3.3 TWO STAGE STOCHASTIC MODEL FOR CELL DURATION IN THE

TUMOR

In this model it is assumed that every malignant cell in the tumor is in state A in

the beginning.  After a period of time in state A, the malignant cell will either dead (going

to state C) or divides in to two mutant cells (going to state B). 

Let f(x) be the probability density function of a cell that the time spent in state A

function of a cell that the time spent

function of the cell in the states A, B and C respectively are
t

0

F t 1 f x dx                 (3.3.1)
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t

0

G t 1 g x dx          (3.3.2)

t

0

H t 1 h x dx                 (3.3.3)

Therefore the force of transition from state A to state C, state A to state B and from state B

to state C respectively are

1

f t
t

F t
          (3.3.4)

2

g t
t

G t
                (3.3.5)

3

h t
t

H t
                (3.3.6)

The probability that a malignant cell generated initially at time t=0 is still in the tumor in

t

a t F x g x G x f x dx               (3.3.7)

The probability that a mutant malignant

t

0 0

g x H t x
b t F y g y f y G y dy dx

G x
           (3.3.8)

The probability that a malignant (either mutant or premutant) cell

is c t 1 a t b t for all t 0               (3.3.9)

In order to analyse transition probabilities, it is assumed that the duration of time a

cell spent in state A before reaching to state B, the duration of time a cell in the state B

before reaching to state C and the duration of time a cell in the s

state C are all exponential with parameters , d2 and d1 respectively. 

1 2d x d xx
1 2f x d e ;g x e ;h x d e             (3.3. 10)

Therefore the expected duration of a pre malignant cell is in state A before

reaching state C is (1/d1) the expected duration of pre malignant cell in state A before

reaching the state B is (1/ ) and the expected duration of a mutant malignant cell in state B

before reaching state C is (1/d2).

Substituting (3.3.10) in the equations (3.3.7), (3.3.8) and in (3.3.9) we get

1d ta t e          (3.3.11)
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12 d td t

1 2

b t e e
d d

             (3.3.12)

1 2d t d t1 2

1 2 1 2

d d
c t 1 e e

d d d d
           (3.3.13)

Let s(t) be the probability that a premalignant cell generated at time t=0 is still in

the tumour at time t, then

1 2d t d t1 2

1 2 1 2

d d
s t e e

d d d d
           (3.3.14)

Which can be rearranged as

1 2t ts t Pe 1 P e

Where 1 1 2 2d ; d and 1 2

1 2

d d
p

d d
therefore s(t) is the probability density

function of the mixture of exponential distribution with parameters 1 2p, , . 

For different values of d1, , d2 and t the values of s(t) are computed and given in

table (3.3). From table (3.3) it is observed that s (t) is a decreasing function of t when other

parameters remain fixed.

Then

its expected duration in the tumour is  

1 2

0

E T t d a t d b t dt         (3.3.15)

By substituting the equations (3.3.7) and (3.3.8) in the equation (3.3.15), we get

2

1 2

d
E T

d d
,               (3.3.16)

Similarly

2 1 2
3 33

1 2 21 1

2d 2d 1 1
E T

d d dd d
            ( 3.3.17)
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TABLE 3.3: The values of S (T) for different values of , , and t

d1 d2 t S(t)
0.123 0.017 0.001 0 1

      2 0.785
      4 0.622
      6 0.5
      8 0.407
      10 0.337

0.567 0.017 0.456 0 1
      2 0.323
      4 0.105
      6 0.035
      8 0.012
      10 0.004

0.985 0.683 0.174 0 1
      2 0.421
      4 0.387
      6 0.373
      8 0.36
      10 0.348

0.123 0.985 0.453 0 1
      2 0.553
      4 0.239
      6 0.098
      8 0.04
      10 0.016

0.567 0.683 0.001 0 1
      2 0.582
      4 0.547
      6 0.543
      8 0.541
      10 0.54

0.985 0.99 0.974 0 1
      2 0.141
      4 0.02
      6 0.003
      8 4.076x10-4

      10 5.805x10-5

The variance of T is

2

1 2 2
3 3 3

1 2 2 1 211

2d 2d 1 1 d
V T

d d d d ddd
                 (3.3.18)

For different values of d1, , d2 the expected duration of time a cell is in the time tumor

and its variability are calculated and given in the table (3.4). 
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TABLE 3.4: The values of E(T) and V(T) for different values of d1, and d2

d1 d2 E(T) V(T)

0.0181 0.1934 0.213 9.0291 552.18
0.542 0.1934 0.213 1.74 47.877
0.903 0.1934 0.213 2.594 78.329
1.264 0.1934 0.213 1.309 34.417
0.542 0.1934 0.827 1.678 13.387
0.542 0.574 0.827 1.518 4.477
0.542 0.384 0.827 1.581 7.362
0.542 1.145 0.827 1.413 1.228
0.903 0.955 0.009 57.649 0.001
0.903 0.955 0.418 1.16 5.015
0.903 0.955 0.827 1.768 1.523
0.0903 0.955 1.235 0.954 0.857

From the equation (3.3.16) and Table (3.4), it is observed that expected total

1 when

1 2d d . It is also observed that E(T) is a decreasing function of , when

1 2d d .  It is further observed that the expected total duration of the cell in the tumor

is a decreasing function of d2when 1 2d d . 

From the equation (3.3.18) and table (3.4), it is observed that the variability of total

1,

and d2 as 1 2 1 2d d ; d d and d2 as 1 2d d respectively. 
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CHAPTER 4

Stochastic Model for Mutant Cell Growth under Chemotherapy

4.1 INTRODUCTION

Chemotherapy is a medical treatment for the control of cancer cell growth through

drugs.  Malignant tumors (cancer) tends to grow rapidly and show differences in size and

shape.  in the earlier chapters 2 and 3, the author has consider the mutant cell growth with

an assumption that the drugs are continued for a long period of time.  However in some

chemotherapy treatments, the chemotherapy is prescribed on cyclic basis.  When an

anticancer drug is induced to the body, both normal and cancer cells are killed.  The white

blood cells fall to the lower level and care is needed to evaluate the status of the patient.  If

the outcome is not favourable, life threatening hazards may develop so an interval of time

is to be specified during which the chemotherapy may be discontinued to recover.  But due

to discontinuation of Chemotherapy, the tumour will also grow.  At the end of this

recovery period, the chemotherapy is to be started again.  Due to the stochastic nature of

the constituent process, the situation is to be well analyzed through stochastic modeling of

cancer cells during the chemotherapy and its absence. 

It is assumed that the loss process of the malignant cells follows the poisson

process with different parameters, when the patient is under chemotherapy and when the

patient is in recovery state.  Similarly the growth process of the cancer cells is also poison

with different parameters for two states of the patient.  It is also assumed that the recovery

periods are independently and identically distributed exponential varieties.  With these

considerations, in this chapter we develop a stochastic model for cancer cell growth, which

is much useful for determining the optimal drug dose regimes. 

4.2 STOCHASTIC MODEL FOR CANCER CELL GROWTH UNDER

CHEMOTHERAPY

during the

presence of chemotherapy and in the absence of chemotherapy respectively. The time for

which the patient is in recovery state is exponentially distributed with parameters rc , i.e

the time in which the patient moves from the state of recovery to chemotherapy with mean

duration rc .  The time in which the patient is under the chemotherapy treatment is a

random variable with probability density function f(x).  If rc (x) is the conditional
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probability that the patient will move from chemotherapy state to recovery state given that

the patient has been under treatment for a time

x

cr

0

x dx

crf x x e

Also assume that the loss process of cancer cells is poisson with death rates rn

and cn when the patient is under recovery and under the chemotherapy states

respectively. Let the maximum size of tumour (number of cells in the tumor) be N.  Let

Pr, n

c, n (t, x) be the probability that the patient is

x, x dx . 

With the above assumptions, the difference equations of the model are

r
r,n r,c r,0 r,1 c,r c,0

0

P t h 1 h h p t hp t x hp t, x dx    (4.2.1)

r
r,n r,c r,nP t h 1 n h n h h p t

r
r,n 1 r,n 1n 1 hp t n 1 hp t

c,r r,n

0

x hp t, x dx o h , O n N 1     (4.2.2)

r
r,N r,c r,N r,N 1p t h 1 N h h p t N 1 hp t

c,r r,N

0

x hp t, x dx o h        (4.2.3)

c
c,0 cr c,0 c,1p t h,x h dx 1 x h p t,x dx hp t,x dx 0 h    (4.2.4)

r
c,n cr c,np t h,x h dx 1 n h x h p t, x dx   

c
c,n 1n 1 hp t, x dx o h 1 n N 1     (4.2.5)

c
c,N cr c,Np t h,x h dx 1 1 N h x h p t, x dx o h , n = N   (4.2.6)

With the boundary conditions, 

c,Np 0 1for n 0

= 0 otherwise

c,np o, x 0 for all n 0; c,n rc r,np t,0 p t , for n N

The difference differential equations of the model are
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r
r,0 rc r,0 r,1 cr c,0

0

d
p t p t p t x p t, x dx

dt
    (4.2.7)

r r
r,n rc r,n r n 1

d
p t n n p t n 1 p t

dt

r,n 1 cr c,n

0

n 1 p t x p t, x dx , for 1 n N 1    (4.2.8)

r
r,N rc r,N r, N 1

d
p t N P t N 1 p t

dt cr c,N

0

x p t, x dx (4.2.9)

c
c,0 c,0 cr c,0 c,1p t, x p t, x x p t, x p t, x 0

x t
    (4.2.10)

c
c,n c,n cr c,np t, x p t, x n x p t, x

x t

c
c,n 1n 1 p t, x 0, for1 n N 1     (4.2.11)

c
c,N c,N cr c,Np t, x p t, x N x p t, x 0

x t
     (4.2.12)

For solving these difference differential equations, we use Laplace transformation.  

Multiplying the equation (4.2.7) with e-st on both sides and integrating, we have

st st r st
r,0 rc r,0 r,1

d
e p t dt e p t dt e p t dt

dt

st
cr c,0

0

x P t, x e dx         (4.2.13)

Denoting st
r,0 r,0P s e p t dt and substituting in the equation (4.2.13) and after

some simplifications we have

r
r,0 r,0 r,1 c,0rc cr

0

d
P s s P s P s x P s, x dx

dt
   (4.2.14)

Using the boundry conditions and on simplification, we get

r
rc r,0 r,1 rc c,0

0

s P s 1 P s x P s, x dx      (4.2.15)

Considering the equations (4.2.8) to (4.2.12) and taking the Laplace transformation

and using the boundary conditions, we have

r r
rc r,n r,n 1 r,n 1s n n p s n 1 p s n 1 p s
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cr c,n

0

x p s, x dx, 1 n N 1       (4.2.16)

r
rc r,N r,N 1 cr c,N

0

s N P s N 1 P s x P s, x dx     (4.2.17)

c
cr c,0 c,1 c,0s x p s, x P s, x p s, x

x
      (4.2.18)

c c
cr c,n c,n 1 c,ns n x P s, x n 1 P s, x P s, x

x

      1 n N 1     (4.2.19)

c
cr c,N c,Ns N x p s, x p s, x

x
      (4.2.20)

Solving the linear differential equation (4.2.20), we get
x

c
cr

0

s N x x dx

c,N c,Np s, x p s,0 e        (4.2.21)

Taking n = N 1 in the equation (4.2.19), we have

c c
c,N 1 cr c,N 1 c,NP s, x s N 1 x P s, x N P s, x 0

x
   (4.2.22)

using (4.2.21) and solving the equation (4.2.20) we get
x

x dxc cr

0

s N 1 x
c

c,N 1 1 c,N c,N 1P s, x N A ,P s,0 P s,0 e

Where

c x

1 c

1 e
A          (4.2.23)

Taking n = N 2 in the equation (4.2.19) and solving we get  

c c
c,N 2 2 c,N c,N 1 1P s,x N N 1 A , p s,0 N 1 P s,0 A

  

x
c

cr

0

s N 2 x x dx

c,N 2P s,0 e

Where

c 2
x

2 2c

e 1
A

2!
        (4.2.24)

and for 1 i N 1

x
c

cr

0

s N i x x dxi i kc
c,N 1 i k c N k

k 0

N k

P s, x P A P s,0 e

i k
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where 0A 1 and

c k
xk

k kc

1 e 1
A

k!
       (4.2.25)

taking i = N 1 we have

x
c

cr

0

s x x dxN 1 N 1 kc
c,1 N K 1 c,N k

k 0

N k

P s, x P A P s,0 e

N k 1

   (4.2.26)

Substituting the value of c,1P s, x from the equation (4.2.26) in the equation

(4.2.18), we have

x

cr

0

sx x dxN 1 N kc
c,0 N k c,N k c,0

k 0

N k

P s, x P A P s,0 P s, x e

N k 1

  

           (4.2.27)

By taking (N i) = n in equation (4.2.25) we have

x
c

cr

0

s n x x dxN n N n kc
c,n N n k c,N k

k 0

N k

P s, x P A P s,0 e

N k n

for1 n N 1

where kA is as given in the eqution (4.2.25)       (4.2.28)

substituting the value of c,0p s, x from the equation (4.2.27) in the equation

(4.2.18) and using the boundary conditions, we get r,0p s

Therefore

c
rc rc r,0 c,1s f s p s 1 p s

N 1 N kc
rc r,N k N k

k 0

N k

P P s L A x f x

N k 1

Where

x

cr

0

s x dx

rc

0

f s x e dx         (4.2.29)

Where L is the Laplace transform operator.  Substituting the value of c,nP s, x

from the equation (4.2.28) in the equation (4.2.16) and using the boundary conditions, we

get
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r c
rc r,n r,n 1 r,n 1 cr

0

s n n p s n 1 p s n 1 p s x

    
N n N n kc

c,N k N n k
k 0

N k

P P s,0 A

N n k

     

x
c

cr

0

s x x dx

e      (4.2.30)

On simplification we have

r r
rc r,n r,n 1 r,n 1s n n P s n 1 p s n 1 p s

  
N n kN k

rc r,N k
k 0

N k
1

p P s
N n k !

N n k

  
c c N n k

s n x x

0

f x e e 1 dx

Where

x

cr

0

x dx

crf x x e        (4.2.31)

This implies

r r
rc r,n r,n 1 r,n 1s n n P s n 1 p s n 1 p s

    
N n

N n k

rc r,N k
k 0

N k

1 P P s

N n k

    
N n k

i

N k i
i 0

N r k

c 1 f s

i

    (4.2.32)

Substituting the value of c,NP s in (4.2.17) and using the boundry conditions, we have

r
rc r,N r,N 1 N rc r,Ns N P s N 1 P s f s p s     (4.2.33)

This implies

r
rc rc N r,Ns N f s N 1 p s        (4.2.34)

The equation (4.2.34) can also be written as

r,N 1 1 r,Np s A 1 p s
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Where r
1 rc rc N

1
A s N N 1 f s

N 1
and

   c
Ns s N        (4.2.35)

Taking n = N 1, N

r,N 2 2 1 2 r,NP s A A 1 B p s

This implies

r,N 2 2 r,NP s K p s and

r,N 3 3 r,NP s K p s

Where 3 3 2 1 2 3 1 3K A A A 1 B B A 1 D       (4.2.36)

In general

r,N k k r,NP s K P s for 2 k N

Where k k k 1 k k 2 kK A K B K D

r
k rc rc N k 1

1
A s N k 1 N k 1 f s

N k ;2 k N

r
k rc N k 2 N k 3

1
B N k 2 N k 2 f s f s

N k

k j 1k 3
k j 1 i

k rc N j i
j 0 i 0

N j k j 1
1

D 1 P C 1 f s
N k

k j 1 i

(4.2.37)

The equation (4.2.37) gives the values of r,NP s interms of r,NP s .  We can obtain

r,NP s as

1 r
r,N rc rc N N 1P s s f s K K

N 1 N kc
rc k N k

k 0

N k

P K L A x f x

N k 1

Where

N
N i

N i
i 0

N Nc

N

1 C f s

i
L A x f x

N!
and
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Kk as given in the equation (4.2.37)        (4.2.38)

The laplace transformation of the probability that at time t there are (N-i)

malignant cells in the tumor when the patient is under chemotherapy is obtained as

i i k
i k 1 N k 1

c, N i rc r,N k
k 0 1 0 N k 1

N k

P
i k

i k 1 f s
P s p s 1 C 1

i k ! s
1

Where, 

x

rc

0

du

1 F x e          (4.2.39)

On simplification, we have

i
i 1 N 1

c,N i rc
1 0 N 1

N

p
i

i 1 f s
p s C 1

i! s
1

i 1
i 1 1 N 1 1

i,0 rc 1
1 0 N 1 1

N 1

P
i 1

i 1 1 f s
1 K C 1

i 1 ! s
1

  
i i k

i 1 k N k 1
rc k r,N

k 2 i 0 N k 1

N k

P
i k

i k 1 f s
K C 1 p s

i k ! s
1

       0 i N 1
and ij 0 if i =j, ij 1 if i jand Kk is as given in the equation (4.2.37)    (4.2.40)
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N 1 N k
N k i N k i

c,0 rc r, N k
k 0 i 0 N k i

N k

P

N k 1 1 f s
P s P s 1

N k ! s rc r,0

1 f s
P s

s

            (4.2.41)

Using the boundary conditions, we have

N 1 N k
N k i N k i

c,0 rc k
k 0 i 0 N k i

N k
1 f s

P s P K 1
s

N k 1
rc N r,N

1 f s
K P s

s

            (4.2.42)

4.3 LIMITING BEHAVIOUR OF THE MODEL

Assuming that the tumor is in the equilibrium state we have
s 0 t
limsF s limF t ,

r,n r,n
t 0
limP t p and c,n c,n

t 0
limP t p

The equilibrium probabilities of the tumor size when the patient is under chemotherapy is

obtained as

ci
i 1 N 1

c, N i rc c
1 0

N

P
i 1 fi

P C 1
i! N 1

1

ci 1
i 1 1 N 1 1

i,0 rc 1 c
1 0

N 1

P
i 1 1 fi 1

1 K C 1
i 1 ! N 1 1

1
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ci i k
i 1 k N k 1

rc k r,Nc
k 2 1 0

N k

p
i k 1 fi k

K C 1 P
i k ! N k 1

1

where, 

x

cr

0

x dx

N j cr N j
s 0

0

limf s x A e dx       (4.3.1)

cN 1 N k
N k i N k i

c,0 rc k rc N f r,Nc
k 0 i 0

N k

P
1 fN k 1

P K 1 K m P
N k ! N k i

   (4.3.2)

Where f
s 0

1 f s
m lim

s
is the mean duration for which the patient is under

chemotherapy. 

Similarly the equilibrium probabilities of the tumor size when the patient is under recovery

state are  r,N 1 1 r,NP A 1 P

and r,N k k r,NP K P where A1 and Kk is as given in equations (4.2.35) and (4.2.37)

respectively. 

Using the boundary condition,
N N 1

r, N r, N 1 r, N k c, N k c,0
k 2 k 1

P P P P P 1   (4.3.3)

We have

cN N 1 i1 i 1 N 1

r,N k rc c
k 1 i 1 1 0

N

P
i 1 fi

p 1 K C 1
i! N 1

1
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ci 1
i 1 1 N 1 1

i,0 rc 1 c
1 0

N 1

P
i 1 1 fi 1

1 K C 1
i 1 ! N 1 1

1

ci i k
i 1 k N k 1

rc k c
k 2 1 0

N k

P
i k 1 fi k

K C 1
i k ! N k 1

1

cN 1 N k
N k i N k i

rc k rc N fc
k 0 i 0

N k

P
1 fN k 1

K 1 K m
N k ! N k i

Where

c
r

k rc rc rc N k 1

1
A N k 1 N k 1 f

N k

c c
r

k rc 1 N k 2 N k 3

1
B N k 2 N k 2 p f f

N k

c

k 1 1k 3
k 1 1 i

k rc N 1 i
1 0 i 0

N 1 k 1 1
1

D 1 P C 1 f
N k

k 1 1 i

  

           (4.3.4)

4.4 MODEL BEHAVIOUR WHEN THE CYCLE LENGTH IS EXPONENTIAL

Since the distribution of the tumor size depends on the random time X, during which the

patient is under chemotherapy, let us assume that it follows an exponential distribution

with parameter cr .  Then the transition probability from presence of chemotherapy to the

recovery state cr x becomes cr

1 crs cr
1 cr

cr 10

f s e dx
s

        (4.4.1)

We have

r,N 1 1 r,NP s A 1 p s          (4.4.2)

r,N k k r,nP s K p s , 2 k N        (4.4.3)
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and

1 r
r,N rc rc N N 1p s f s K K

N 1 N kc
rc k N k

k 0

N k

P K L A x f x

N k 1

     (4.4.4)

Where Kk and N kA are as given in the equations (4.2.37) and (4.2.38).  When the patient

is under chemotherapy, we have

1

1 cr 1

1 f s 1

s s
          (4.4.5)

This implies

i1 i 1

c, N 1 cr
1 0 cr N 1

N

p
i

i 1
p s c 1

i! s
1

  
i 1

i 1 1

1,0 rc 1
1 0 cr N 1 1

N 1

P
i 1

i 1 1
1 K c 1

i 1 ! s
1

  
i i k

i 1 k

rc k r, N
k 2 1 0 cr N k 1

N k

P
i k

i k 1
K c 1 P s

i k ! s
1

Where r
ns s n           (4.4.6)

N 1 N k
N i k

c,0 rc k
k 0 i 0 rc N k i

N

p

N k 1 1
P s K 1

N k ! s
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  rc N r,N

1 f s
K P s

s

Where

r cr
1 rc rc

cr N i

1
A s N N 1

N 1 s

r cr
k rc rc

cr N k 1

1
A s N k 1 N k 1

N k s

       2 k N

r
k rc

1
B N k 2 N k 2

N k

cr cr

cr N k 2 cr N k 3s s

k j 1k 3
k j 1 cr

k rc
j 0 i 0 cr N j i

N j k j 1
1

D 1 p c
N k s

k j 1 i

(4.4.7)

The probability that the patient is under chemotherapy and (N-i) cancer cells are in

the tumor at any arbitrary time after reaching the equilibrium position is denoted as c,N ip

then

i
i 1

c N i rc c
1 0 cr

N

p
i

i 1
P c 1

i! N 1
1

i 1
i 1 1

i,0 rc 1 c
1 0 cr

N 1

p
i 1

i 1 1
1 K c 1

i 1 ! N 1 1
1
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i i k
i 1 k

rc k r, Nc
k 2 1 0 cr

N k

p
i k

i k 1
K c 1 P

i k ! N k 1
1

           (4.4.8)

N 1 N k
N k i

c,0 rc k rc N f r,Nc
k 0 i 0 cr

N

p

N k 1 1
p K 1 K m P

N k ! N k i
(4.4.9)

Where mf is as given in the equation (4.3.2)

When the patient is in recovery state.  We can obtain the probability that there are

(N-r) cancer cells in the tumor as r,N 1 1 r,NP A 1 p

r,N k k r,NP K p

Where Kk is as given in the equation (4.2.37) and

N i1 i 1

r,N k rc c
k 1 1 0 cr

N

P
i

i 1 1
p 1 K c 1

i! N 1
1

  
i 1

i 1 1

i,0 rc 1 c
1 0 cr

N 1

p
i 1

i 1 1
1 K c 1

i 1 ! N 1 1
1

i i k
i 1 k

rc k c
k 2 1 0 cr

N k

p
i k

i k 1
K c 1

i k ! N k 1
1

  
N N k

N k i

rc k c
k 0 i 0 cr

N

p

N k 1 1
K 1

N k ! N k i rc N fK m
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Where

r
1 rc rc r

cr

1 1
A N N 1

N 1 N

r
k rc rc c

cr

1 1
A N k 1 N k 1

N k N k 1
   2 r N

r
k rc

1
B N k 2 N k 2

N k

  cr cr
c c

cr crN k 2 N k 3

k 3
k j 1

k rc
j 0

N j
1

D 1 P
N k

k j 1

k j 1
i cr

c
i 0 cr

k j 1

C 1
N j i

i

  k k 1 k k 2 kK Ak.K B K . D       (4.4.11)

With this probability distribution of the tumor size in both the states, we can analyse the

tumour behaviour by obtaining the characteristics of the model. 

The probability that there are no cancer cells in the tumor when the chemotherapy

is under administration is  

N 1 N k
N k i

c,0 rc k
k 0 i 0

N

p

N k 1
P K 1

N k ! rc N f r,Nc
cr

1
K m p

N k i

           (4.4.12)

Similarly the probability that there are no cancer cells in the tumor when the

patient is in recovery state is

r,0 N N 1 N N 2 N r,NP A K B K D P        (4.4.13)

where r, Np and NK are as given in the equations (4.4.11) and (4.2.37). 
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from the equations (4.4.12) and (4.4.13) we observe that c,0p and r,0p are increasing

functions of r and c when other parameters are fixed.  The values of c,0P and r,0P are

decreasing when is increasing for fixed values of r c, and N.  The probability of

extinction of the malignant cells in the tumor can be increased by choosing optimal drug

dose. 

The average number of cancer cells in the tumor is

N N

r,n c,n
n 0 n 0

L np np         (4.4.14)

The variance of number of cancer cells in the tumor is

N N
22 2

r,n c,n
n 0 n 0

V n p n p L

Where L is given in the equation (4.4.14).       (4.4.15)

From the equations (4.4.14) and (4.4.15) it is observed that mean and variance of

the number of malignant cells in the tumor is a decreasing function of r and c when

other parameters are fixed.  This model also gives the result of the model when the

chemotherapy is continued for long time (not on cyclic basis) when cr 0 . 
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CHAPTER 5
Summary and Conclusion

  

This book has presented the descriptive modeling of malignant tumor growth based

on cell kinetics.  The tumor growth models gain a lot of importance in Biometrics and

Medical Statistics due to their wide applicability in optimal design and analysis of therapy.  

A tumor is a mass of tissues formed as a result of abnormal, excessive and inappropriate

proliferation of cells.  Due to the complex nature of growth process of tumor, it is

necessary to formulate and integrate models that attempt to describe the growth and

development process of tumors at different levels.  Tumor growth models describe the

evolution of the size of a tumor which is assumed to be originate from an initial

transformed (or) proginator cell.  The size of cells in tumor is approximated by the number

of cells in it.   The number of cells in tumor can usually be estimated indirectly using the

measurements of volume, weight or chemical markers of the tumor.  The growth of tumors

is heavily influenced by spontaneous mutation and proliferation and loss processes.  The

growth of the number of cells in the tumor is random and time dependent. 

Stochastic models are much useful for understanding the cell kinetics of the tumors

and in particularly malignant tumors.  Tumor is said to be malignant tumor if it contains

malignant cells.  Malignant cells can also be referred as mutant cells.  In this dissertation

an attempt is made to develop some suitable stochastic models for cancer cell growth by

assuming the mutation, proliferation and loss process are all poisson for both normal and

mutant cells and analysed using the difference differential equations, generating functions

and Laplace transformation techniques.  The behaviour of tumour growth is analyzed in

the light of mutant rates, loss rates and growth rates of cells by deriving the explicit

expressions for the characteristics of the models. 

The first chapter of this dissertation briefly introduces the motivation of present

research work along with a review on some relevant contributions in tumour growth

models.  Swan (1990) categorized the cancer cell growth models into three categories

namely, (i) Miscellaneous growth kinetic model, (ii) cell cycle model and (iii) other

models, in which the study deals with the first category of models.  Mayneord (1932)

pioneered the systematic study of tumour growth.  The works of Laird (1964), Burton

(1966), Simpson Hersen and Lioyed (1970), Sullivan and Solmon (1972) and Steel

(1977) demonstrate the applicability of the Gompertz growth law to tumour growth.  Their

results are based upon curve fitting.  The Gompertz model is deterministic.  In real
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situations tumor cells are subject to irregular growth due to various random factors.  The

irregular growth can result in tumor sizes that are different than those predicted by the

deterministic models.  To account for the irregular growth stochastic models of tumor

growth have been introduced particularly in the model of cancer cells.  Iverson and Arley

(1950) described the growth of transformed cell, a progenitor of a tumor by a pure linear

birth process. Kendall (1960), Neyman and Scott (1967) used a linear birth and death

process to describe the tumor growth.  Their model used constant birth and death rates and

hence is also a density independent.  Wette, katz and Rodin (1974) developed a stochastic

model for growth of solid tumors based upon the physical characteristics of tumor.  This

leads to a density dependent stochastic process for the mean tumor sizes.  Dubin (1976)

formulated a density dependent, birth and death processes, to describe the tumor growth

subject to immunological response.  Swan (1977) described a method for obtaining the

for tumor growth which is the diffusion limit of a continuous time density dependent

branching processes.  Jain et al. (1995) developed a stochastic model for multistage

tumerogenesis and observed that the tumor latency was strongly influenced by number of

stages and stem cell number at lower mutation rates than at higher rates.  Zheng (1998) has

discussed the role of Kolmogrov forward and backward equations in stochastic

carcinogenesis models. 

With the brief review, it is evident that very little work has been reported in

literature regarding the tumor growth models with spontaneous mutation and proliferation

process except the models of Birkhead (1986).  The spontaneous mutation and

proliferation of tumor cells can be described as a process of cell division with three major

considerations namely, (i) a normal cell may be divided into two normal cells.  (ii) a

normal cell may be divided into one normal and one mutant cell and (iii) a mutant cell

may be divided into two mutant cells.  Due to the recessive oncogenesis hypothesis the

malignant tumor growth can be attributable to the inactivation of both allele genes.  Hence

the growth rates and mutation rates of the normal and mutant cells are not homogeneous.  

It is also important that the chemotherapy can be administered on cyclical basis, which

creates two heterogeneous environments for the tumor growth namely (i) when the patient

is under chemotherapy and (ii) when the patient is under recovery (Temporary absence of

chemotherapy). So to analyze the tumor growth, with all these considerations (which are

very important for effective drug administration) suitable stochastic models are developed.  

The chapter outline of the study is also presented.
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In chapter II, a stochastic model for tumor growth with spontaneous mutation

and proliferation is developed by assuming that the mutation process of normal and mutant

cells are Poisson with different parameters.  It is assumed that the loss process of the

normal and mutant cells are poisson with parameters d1, d2 respectively.  Using the

ormal and mutant

normal cells and the number of mutant cells in the tumor.  So the expected number of

t cells at any given time

-variance

relation between the cumulant generating function and probability generating function.  

Using PCAT computer and MATHCAD+, the sensitivity of the parameters is analyzed by

computing the values of tumor characteristics for different values of the parameters. It is

observed that when other parameters are fixed, the expected tumor size is an increasing

function of growth and mutant rates.  Similarly when the loss parameters d1 and d2 are

decreasing, the growth of tumor is increasing.  It is also observed that the tumor size and

its variability are also influenced by the initial size of the tumor.  The dependence between

The heterogeneity of the growth rates of normal and mutant cells in the tumor may

be attributable to inactivation of both allele genes which is known as recessive

oncogenesis hypothesis.  This is incorporated by assuming that the proliferation of mutant

cells is due to sum of natural proliferation and due to inactivation of allele genes.  By

using the difference differential equations, the Joint probability generating function of the

to spontaneous mutation and proliferation. The expected number of normal cells, the

expected number of mutant cells and

the probability generating function.  It is observed that, the inactivation of allele genes has

a tremendous influence on the tumor size.  The drug efficiency on the tumor is also

investigated by developing and analyzing another stochastic model with the assumption

that when the tumor is under drug administration the loss process of the cells is due to

natural loss and loss due to drug administration.  The joint probability generating function

for the n

probability generating function the expected number of normal cells and their variance are

in
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the light of the loss rate due to drug administration.  The mean tumor size is reduced when

s a decreasing function

of when other parameters are fixed.  It is also observed that the variances of number of

+b+ )< (d+ ).  

Following the heuristic argument of Goldie and Coldman (1979, 85) the drug sensitivity of

this model is investigated by obtaining the probability of cure, which is the probability of

eventual extinction of remaining resistance cells after complete eradication of sensitive

cells. 

chapter III deals with a two stage stochastic model for a cancer cell growth with

the assumption that in any malignant tumors there will be premalignant and malignant

clones.  In the beginning a normal clone becomes premalignant and later it becomes

malignant if it takes further proliferation.  A premalignant cell may extinct without

becoming a malignant cell or it may take mutation and become a malignant cell.  The size

of the malignant tumor is heavily influenced by these growth kinetics of malignant cells, 

that make up the foci within the foci.  This situation in the tumor growth can be suitably

approximated by developing a two stage stochastic model with the assumption that the

growth of premalignant cell, mutation and loss of premalignant and malignant cells are

random and follows poisson process with different parameters.  The joint probability

generating function of the number of premalignant cells and malignant cells in the tumor

at a given time is derived by using the difference differential equations.  The expected

number of p

obtained explicitly.  The average tumor size and its variability are also obtained and

analyzed in the light of the parameters.  It is observed that the tumor size is an increasing

function of growth rate.  The average tumor size is a decreasing function of d2, the loss

the tumor.  The probability that a malignant cell (either premalignant or malignant) which

malignant cell in the tumor and its variance are also obtained.  If the mutation rate of

premalignant cells is increasing the average duration of cell in the tumor is increasing

when other parameters are fixed.

In Chapter IV of this study a stochastic model for the mutant cell growth under

chemotherapy is developed and analyzed.  In some chemotherapy treatments, the
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chemotherapy is prescribed on cyclic basis.  When an anti cancer drug is induced to the

body both normal and cancer cells are killed.  When the normal cells come to a lower

level, care is needed to evaluate the status of the patient because life threatening hazards

may be developed. So an interval of time is to be considered during which the drug may

be discontinued and the patient is allowed to recover, but due to discontinuation of the

drug the tumor will also grow.  So at the end of the recovery period, the drug is to be

administered again.  This situation is modeled through assuming the growth process and

loss process of the cancer cells are poisson with different parameters for two stages of the

patient, namely (i) when the patient is in recovery state and (ii) when the patient is under

chemotherapy.  using the supplementary variable technique the difference differential

equation governing the tumor size probabilities in both state are obtained. The Laplace

transformation of the tumor size distribution under transient conditions is also derived.  

Assuming that the tumor is under equilibrium the tumor size distribution when the patient

is under chemotherapy as well as under recovery period are also obtained.  Assuming that

the time in which the patient is under chemotherapy is also exponential.  The probability

of extinction of the tumor and expected number of cancer cells in the tumor and its

variability are also obtained and analyzed. It is also observed that the efficiency of the

drug is directly linked with the extinction of the malignant cells in the tumor.  This model

is very useful for administration of chemotherapy as one can have the prediction of the

tumor size distribution in both states of the patient. 

In this last chapter five the ideas and results derived in the earlier chapters are

summarized.  Some interesting topics for further research in this area are also pointed out.

SCOPE FOR FURTHER RESEARCH

This study is carried out on the descriptive modeling of the cancer cell growth.  It

is also possible to develop optimal control policies based on these models by considering

various risk functions and optimization of the model parameters.  The inferential aspects

of these models can also be investigated by developing suitable estimators which require

further investigations. 

With the above discussions the stochastic models developed for the cancer cell

growth are useful in approximating the malignant cell growth more accurately under

different conditions.  These models are much useful for understanding the cell kinetics and

to administer optimal drug doses in chemotherapy.  it is also highly probable to develop

many more stochastic models for cancer cell growth with plausible assumptions in order to

approximate the natural phenomenon more closely.
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