Some Stochastic Models For Cancer Cell
Growth

This book is designed to provide the stochastic models for cancer cell
growth as an alternative of non-parametric approach of assessing the
cancer severity. Much emphasis of modeling is focused to formulation of
mathematical models with  probabilistic measures on the
pathophysiology and genetic properties of cancer. The study is
stressed more on stochastic modeling of cancer growth as modeling
with deterministic environment is far from the reality. Bivariate stochastic
model for normal and mutant cell growth was developed under the
assumption of the growth and loss processes of mutant and normal
cells are Poisson. Approach of difference differential equations is
adopted to obtain the probability functions and several statistical
measures. Another stochastic model for mutant and normal cell growth
under chemotherapy is developed by taking similar assumptions. Two
stage stochastic models for a cancer cell growth with the assumption of
(i) every malignant tumor will have the premalignant and malignant
clones and (ii) the growth of premalignant cell, mutation and loss of
premalignant and malignant cells are random and follows Poisson
processes, were developed.
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Preface

In this study the author has attempted to present some stochastic models for cancer
cell growth. Research evidences reveals that Non-parametric approach of assessing the
cancer severity is the age old practice in which these studies have many limitations as they
are far from the accuracy and beyond the reach of real quantification. Further, it allows
much ambiguity in assessment of disease behaviour. Whereas Mathematical studies in
Biological applications are gaining more importance due to their significant advantages.
Hence assessment of real situation through mathematical simulations is a suitable
alternative for handling biological problems. Applying the mathematical models for
measuring the cancer growth is one of such useful approaches. Modeling on genetics and
Pathophysiology of cancer cell growth through mathematical techniques is attracting much
attention of researchers due to its multi disciplinary approaches with Biologists,
Mathematicians, Statisticians, Computing Experts, etc.

As stochastic models are providing the basic frame work for analyzing the natural
phenomena of cancer growth, this study is stressed on modeling the biological aspects of
cancer disease with mathematical approaches. Studies on tumor growth models have
gained interest due to their utility for optimal drug administration. The vital processes of
tumor growth related with spontaneous mutation, proliferation process, loss process, etc of
the cells have to be assessed through suitable modeling. This study focused on developing
and analyzing some stochastic models for cancer cell growth in different environments of
tumor.

The cell kinetics plays a vital role in the growth of tumors. Usually the
spontaneous mutation and proliferation process of cells are random in nature. Therefore
the growth of a tumor has to be analyzed through the mentioned behaviour of cells in the
tumor. Many studies have proposed that the stochastic Models for the growth of mutant
cell population based on the assumption of growth rates of normal and mutant cells are
homogeneous. However, it is interesting to note that the growth rates of normal and
mutant cells are not homogeneous as their proliferation processes are not same. Hence,
the proliferation of normal and mutant cells is considered to be stochastic rather than
deterministic.

The second chapter of the study consists of a Bivariate stochastic model for normal
and mutant cell growth under the assumption of the growth and loss processes of mutant

and normal cells are Poisson with different growth rates and loss rates. Difference



differential equations are used to derive several statistical measures based on the
probability functions. This model is extended with the assumption of mutant cell's
growth is much faster than the normal cell. Another stochastic model for mutant and
normal cell growth when the patient is under chemotherapy is developed by assuming the
loss process of normal and mutant cells is the sum of natural loss and loss due to
chemotherapy. These models are very useful for analyzing the tumor growth and to
administer the chemotherapy more effectively.

Third chapter of the book consists of two stage stochastic model for a cancer cell
growth with the assumption of every malignant tumor will have the premalignant and
malignant clones. A premalignant cell may either extinct without becoming a malignant
cell or it may take mutation and become a malignant cell. The size of the malignant tumor
is heavily influenced by these growth kinetics of malignant cells, that make up the foci
within the foci. This situation in the tumor growth is also modeled as another two stage
stochastic model with the assumption that the growth of premalignant cell, mutation and
loss of premalignant and malignant cells are random and follows Poisson processes.

Chapter four of the book is on a stochastic model for the mutant cell growth under
chemotherapy. The situations of drug administration and drug vacations are modeled by
assuming the growth and loss processes of the cancer cells are Poisson with different
parameters for two stages of the patient. The probability of extinction of the tumor is
derived so as the average size and variances of cancer cells in the tumor are analyzed. It is
observed that the efficiency of the drug is directly linked with the extinction of the
malignant cells in the tumor. This model will have significant utility for administering the
chemotherapy. Summary presentation was given in the last chapter.

The models with this study have lot of importance to the health caretakers for
implementing the optimal chemotherapy protocols. The complexity of the model and its
application in real time data with cumbersome data sets demands the speedy and accurate
calculations, which in turn increase the demand of computer technologists to prepare
suitable software. User friendly computer automation may be developed by combining the
developed mathematical models and suitable computer programs.

The author is indebted to his research supervisor, teacher and philosopher Prof. K.
Srinivasa Rao, Dept. of Statistics, Andhra University, Vishakhapatnam, A.P., India for his
scintillating support, encouragement and continuous follow up on the refinements of this
study.

Tirupathi Rao Padi
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CHAPTER -1

Introduction

1.1. OVERVIEW:

Mathematical studies in Biological applications is gaining its importance due to its
sharp edged advantage. The assessment of real situation with mathematical simulation is
the suitable alternative without disturbing the basic biological issues. Applying the
mathematical models for measuring the cancer growth is one of such useful approaches. It
is more useful in understanding the cancer dynamics. Several nonparametric approaches
are in practice to assess the problem severity. However, they have many limitations as
they are far from the accuracy and beyond the reach of real quantification. Further it
allows much ambiguity in assessment of disease behaviour. Many significant works were
reported in quantifying the qualitative traits for measuring the eventual phenomena.
Modeling the genetical issues and Pathophysiology of the cancer cell growth through
mathematical techniques has attracted the attention of the multi disciplinary approaches
with Biologists and Mathematicians, Statisticians, Computing Experts. This study has
dedicated to modeling the biological aspects cancer disease with mathematical approaches.
The stochastic processes involved in growth and loss of cancer cells are obtained through

suitable assumptions and postulates.

Cancer Pathophysiology:

Pathophysiology of cancer describes that most of the cancers are due to the genetic
structures and the disease processes characterized by uncontrolled growth and spread of
cells. Causing of cancer may be attributed with several unexplained reasons. Healthy and
normal behaved cells having specific size, growth pattern, function and structure may be
exposed to spontaneous mutation and ultimately they will be converted in to cancer
causing cells. These cancer cells differ from normal cells in several factors with respect to
their size, structure, function, growth rate, etc. These malignant cells will be beyond the
normal regulating control as observed with healthy cells. Further the cancer cells will
invade to adjacent structures and affect the related tissues and organs.

The mutant cells may form metastasis in other areas of the body through the blood
circulation systems and further they will lose their ability to act like normal and healthy
cells. This inability leads to transform them as either benign cells or malignant cells.

Benign neoplasm is made up of the same cell type as the original parent cell and they do
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not invade to the adjacent tissues. Whereas the malignant cells will be more vibrant in
forming their secondary cells and grow with faster rate by continuous and unending
proliferation. There are considerable differences in the growth rates of malignant tumors.
Some tumors are very slow-growing, even in a malignant state, and are therefore removed
easily. Other tumors may grow slowly at first and then undergo change and continue to
grow at a rapid pace. Others tumor types may grow very rapidly throughout their entire
existence. Tumor growth is influenced by the factors like individual's immune system,
growth rate of tumor, number of actively spreading tumor cells, etc. Hence, we may
describe that uncontrolled cell growth is a characteristic of cancer.

Understanding the causing factors of cancer occurrence is a complex process. It is
linked with many factors to name a few, professional hazardous, unhealthy lifestyles and
practices, medical interventions, genetic traits, etc. The initiation of carcinogenesis occurs
will be observed when DNA is damaged or altered. Genetic cancer is a susceptibility to a
small percentage of cancers and a primary cause of cancer is damage to a specific gene. If
the damaged gene is part of the genetic line, then the cancer can be inherited by
succeeding generations. Cancer also can be caused by Oncogenic viruses can affect DNA
or RNA, which infect normal cells and cause alterations in the cell's genetic material.
These genetic alterations can cause specific types of malignant and benign cancers in
susceptible individuals by allowing uncontrolled growth in cells. Cancer causing due to
genetic reasons require the attention of the researchers as the biological relations and
Pathophysiology issues can be understood with well defined scientific principles.

Inherited cancers tend to occur earlier in life and typically cause multiple growths
in the same organ. Disorganization of cells shall indicate dysplasia. Dysplasia is a result of
chronic un healing among the organs. The initial level of dysplasia is referred as
Metaplasia and it is reversible. Epithelium of the respiratory tract where columnar
epithelial cells change into squamous epithelial cells is the most common type of
metaplasia. Increase in the number of cells in a tissue or in a part of a tissue is referred as
Hyperplasia, and results in increased tissue size. Normal hyperplasia is observed in the
tissue and increases during the healing of wound, bone fracture, formation of callus, etc.

Tumors are classified according to tumor node metastasis (TNM) Clinical
Classification System. Tumor (T) is classified as Carcinoma in situ, increasing size, local
extent, or both, of primary tumor, etc. Regional lymph nodes include no metastasis and
increasing involvement of regional lymph nodes. The spread of cancer cells from the
primary site, or site of origin, is called metastasis. Cancer cells can spread throughout the
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body through the bloodstream, the lymphatic system, or through local invasion and
infiltration into surrounding tissues. Metastasis includes no distant metastasis and distant
metastasis. A multi step process in the progression of sequential accumulation of
mutations within tissue cells is referred as tumor genesis. The cancer stem cell hypothesis
has enormous implications for cancer therapeutics and will target the rapidly dividing
differentiating cells that comprise the major bulk of tumors, often leading to significant
reduction in tumor size.

If occurrence of cancer is as an epidemiology, it may be due to the reasons of
environmental issues and individual life styles. These cancers are usually observed during
the transitions of people from countries with low cancer rates migrated to countries with
high cancer rates. we may observe variations in cancer rates in different geographical
locations of the same nation. The staging of cancer is decided with the rate of growth and
the extent of the disease. It will help to know the treatment options to expect the life span
of the patient and to determine the severity of the disease. the factors that decide the stage
of cancer includes Location and size of the primary tumor; Extent of lymph node
involvement; Presence or absence of metastasis and Type of tumor and the tumor-host

relationship

Cancer Measuring Models:

Several mathematical models for measuring the spread and intensity of cancerous
growths have been developed, especially on solid tumors, in which growth primarily
comes from cellular proliferation. The invasiveness of gliomas, however, requires a
change in the concept to include cellular motility in addition to proliferative growth.
Stochastic models provide the basis frame work for analyzing the natural phenomena. In
many biological systems it is important to study the development and growth of tumors.
A tumor a is mass of tissues formed as a result of abnormal, excessive and inappropriate
(purposeless) proliferation of cells. Owing to the complex nature of growth process of
tumor it is necessary to formulate and integrate models that attempt to describe the growth
process at different levels. Mayneord (1932) has pioneered the systematic mathematical
study of tumors. Later several authors have developed various models for cancer cell
growth with various assumptions in order to analyse the growth kinetics of tumors. One
of the potential string in developing these models is replacing some of the homogeneity

assumptions, where a more realistic nature can be employed.



Tumor growth models gained interest due to their ready utility for optimal drug
administration. So as to incorporate the natural phenomena, we have to consider the
growth process as stochastic rather than deterministic. The vital processes of tumor
growth are spontaneous mutation, proliferation process and loss process of the cells.
Along with several other assumptions, it is customary to assume that the mutation and
proliferation processes of normal and mutant cells are homogeneous. This assumption is
valid only when we analyse the models under the single environmental for both normal
and mutant cells. However in tumors, once the tumor is formed (in particular with cancer
cells) the growth and loss processes of normal and mutant cells are non-homogeneous
(heterogeneous). In this study an attempt is made to fill the gap in this area of research by
developing and analyzing some stochastic models for cancer cell growth in different

environments of tumor.

1.2 RESUME ON CANCER CELL GROWTH MODELS

This section has provided a brief review on some contributions on the modeling of
cancer cell growth in chronological order. Several models have been developed for
understanding the origin and development of tumors.

Mayneord (1932) Pioneered the study on growth of the tumor in volume through
the application of a differential equation model for the rat sarcoma. Rashevsky (1945)
developed the mathematical models involving differential equations that deal with the
dynamic or time course variation of the cancer. Iverson et al. (1950) studied the
mechanism of experimental carcinogenesis. The probability distribution of latent period,
the lethality of applied carcinogenesis etc. were estimated through the stochastic theory.
Arley et al. (1952) developed a model based on the one stage mutation hypothesis. The
dose response relation in any one series characteristics by a fixed time pattern was fitted
by this model. Kendall (1952) has developed a quantitative model for carcinogenesis
based on phenotypically delayed mutation. Armitage et al. (1957) developed a model for
two stage theory of carcinogenesis in relation to the age distribution of tumor cancer. This
model is characterized by a deterministic assumption that the clone of first order mutants
grow in exponential form. Neyman (1958) discussed the biological situations of cell
growth as a stochastic model and phenotypical delayed mutation process for a quantitative
theory of carcinogenesis.

Kendall (1960) investigated the biological situation of cell growth as a birth and
death model considering a large population of normal cells subject to carcinogenic action.
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The carcinogenic action was categorized in to four states. He assumed that the birth and
death rates are constants. Armitage et al.(1961) developed a stochastic model for
carcinogenesis and reviewed various mathematical models, which discussed the induction
period of carcinogenesis transition probability density per unit time for each tissue. Laird
(1964) discussed the dynamic of growth of a tumor using Gompertz law. Burton (1966)
studied the growth rate of solid tumors as a diffusion process. Neyman et al. (1967) used a
linear birth and death process to describe tumor growth. They considered the probabilities
of birth and death are constant and hence it is also density dependent.

Simpson et al. (1970) investigated the experimental tumor system with cell kinetics
and growth curves. They have computed the time required for tumor to pass from the
initial size referred as the first passage-time formula. Sullivan et al. (1972) described the
kinetics of tumor growth and regression relations in Ig. G multiple myolema through
Gompertz law. Wette et al. (1974) developed a stochastic model for growth of solid
tumors based on physical characteristics of the tumor. This model leads to density
dependent stochastic process for the mean size of the tumor. Bahrami et al. (1975) dealt
with the applications of engineering optimal control theory to investigate the drug
regimen for reducing an exponential tumor cell populations. Dubin (1976) formulated a
density dependent birth and death process to describe tumor growth subject to
immunological response. The density dependence is due to a non-linear factor in the
transition probability of the death of a tumor cell. The deterministic part of Dubin’s model
is similar to the logistic growth law.

Swan et al. (1977) has utilized engineering optimal control theory for
chemotherapy problems involving a human tumor. Steel (1977) studied various growth
kinetics of tumor through the logistic model and demonistrated the applicability of
Gompertz growth law of tumor growth. Swan (1977) reviewed various mathematical
models regarding the tumors. He described a method for obtaining the exact solution to
Dubin’s (1976) model. Schwartz. (1978) developed a mathematical model for breast
cancer to evaluate the benefits of screening for breast cancer, the hypothesis concerning
the age-specific incidence of the disease was considered. The rate of disease progression,
the tendency of the disease, etc. were studied.

Hanson et al. (1981) derived an asymptotic approximation to the first passage time
problem for singular diffusion population. They have obtained a solution for density
dependent stochastic population.  Bartosynski (1981) developed a model on the
appearance times of metastases s a non-stationary poisson process and developed
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algorithm using probability density estimation, mortality measurements and discrete
maximum penalized likelihood approach. Kang et al. (1982) considered a continuous
bilinear model in state space cell kinetics of a tumor cell population under the effects of
chemotherapy. the time course behaviour of a Chinese — Havster Overy (CHO) cell
population is simulated and an optimal strategy for cancer treatment is derived to balance
the effects on cancerous as well as normal tissues. Hanson et al. (1982) derived a
stochastic model for tumor growth based on diffusion approximation of continuous time,
density dependent branching process with a Gompertz growth law as the deterministic
part.

Coldman et al. (1983) developed a mathematical model of tumor resistance to
chemotherapy. the probability of no resistant cell is utilized as a fundamental quality of
interest, and the effects of various therapeutic strategies on it are explored. After
observing the application of various drugs, it was inferred that the simultaneous
administration of all available active agents is optimal where this is permissible. Steven et
al. (1983) described a mathematical model of growth based on the kinetics of cell cycle.
Intrinsic growth rate equations were derived and behaviour of model was characterized
based on animal tumor cell cycle kinetics data.

Atkinson (1983) studied the growth rate of a cancerous tumor as a function of its
age. An estimator for the growth function from data on size at detection is obtained and
applied to data on large series of cases of breast cancer, which indicates that the growth
function can be adequately described by exponential growth. Chiang (1983) discussed the
theory of multistage carcinogenesis with a time dependent stochastic model. He derived
the distribution of the time required for a given number of mutations and the probability of
developing neoplastic cells in a given interval of time.

Serio (1984) studied a two-state stochastic model for carcinogenesis with time —
dependent parameters. Epidemiological characteristics of the cancer to the biological
evolution of the tissue are also studied. Forbes et al. (1984) reviewed various
mathematical models of carcinogenesis, which provide an insight in to the consequences
of making certain biological assumptions. They have suggested that it is appropriate to
select the simplest model. Marco et al. (1984) developed a mathematical model, which
consists of a system of first order partial differential equations. They investigated the
evolution of a homogeneous cell population under the action of mutagenic agents.

Birkhead et al. (1984) studied a mathematical model relating tumor response under
repeated doses of a single cytotoxic agent to the presence and accumulation of phenotypic
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drug resistance. They have presented an analytic expression for quantities like the
fractional tumor reduction effected by dose, the minimum tumor size achieved under
therapy etc. Dibrov et al. (1984) studied the development of chemotherapeutic protocols
with increased selectivity in killing malignant cells as opposed to normal cells. They
considered the dynamics of a proliferating cell population under periodic treatment by a
phase — specific agent.

Kendal (1984) developed a model which relates the growth of tumors to the degree
of their cellular heterogeneity. The growth rate is proportional to the logarithms of the
number of combinations of cellular states. when the number of combinations of states is
inversely proportional to the total number of inter cellular interactions then tumor’s
growth is Gompetzian.

Jushuachover et al. (1985) compared two types of stochastic models for the initial
growth of cancereous tumors. In the first type, the random element enters via the initial
time of growth (or) via the initial size of the growth of clone. Where as in second type
tumor differ from one another essentially via these growth rates. Tan et al. (1985) derived
the probability distribution for the number of tumors and the incidence rates at the
experiments using two stage model, when an individual is continuously exposed to
environmental agents of cancer.

Hiep (1985) derived a stochastic model of evolution of mutant sub populations
from stem cells in human tumor system. The growth of mutants (both stem cell mutants
and overall mutation) due to mutation of tumor stem cells during growth is explored. This
model relates the mutant stem cells and overall tumor mutant cell population sizes.

Coldman et al. (1985) studied a stem cell compartment model to simulate the
growth of human tumors, which is used to explore the effects of cell differentiation and
loss on the development of spontaneous drug resistance. According to them, the
probability that the resistant cell is independent of rate of cellular differentiation for one
drug and the probability, that the cell resistance is proportional to the rate of cellular
differentiation for more than one drug. Kranz (1985) studied the effects of demographic
and environmental stochasticity on the qualitative behavior of mathematical model from
tumor immunology. A stochastic differential equation whose solution is a limiting
diffusion process to a branching process with random environments is used.

Birkhead (1986) derived the transient solution of the simple linear birth and death
process subject to random mutation. He investigated the curability of cancer under drug
treatment through this solution. He also derived the expression relating to curability of the
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disease to increasing tumor size. Jackson (1986) reviewed some applications of kinetic
simulation of multi enzyme networks to the study of antimetabolic drugs used as
anticancer agents. Kinetic models consists of system of nonlinear differential equations
which describe changes in concentrations of cellular metabolites with respect to time.
Drug sensitivity, drug resistance and drug intervals were estimated with the above
networks. Coldman et al. (1986) presented a stochastic model for the chemotherapy of
experimental tumors. They have derived the equations for the joint probability generating
function for the number of chemo-sensitive and chemo-resistant cells. This model is
extended to two drugs and they have shown now the model can be used to make deduction
regarding the optimum scheduling of therapy.

Marek et al. (1986) described a mathematical model to estimate the cell cycle
phase specific action of a new anticancer drug CI-921. The estimate obtained is in the
form of a sequence of fraction of the cell flow blocked in successive sub compartments of
the cell cycle. Adam (1986) developed a one-dimensional model of tumor tissue growth
in which the source of mitotic inhibitor is nonOuniformly distributed within the tissue.

Flehinger et al. (1987) developed a mathematical model of progression kinetics of
lung cancer in a periodically screened population. They assumed that the development of
adenocarcinoma of lung is a stochastic process with two stages, say early stage and
advanced stage. Various parameters like mean times, detection probabilities, confidence
region etc., were also estimated. Kinsella (1987) fitted a linear multiple regression model
to a tumor time series. The slope parameters are used to estimate the expected life time
extension / reduction as an unambiguous index of treatment effects.

Moolgavkar et al. (1988) described the evolution of malignant cells in the tissue
and those malignant cells that arise from direct mutation from premalignant cells.
Premalignant cells are generated from normal cells as a non homogeneous poisson process
which ignore birth and death of malignant cells. Dinse (1988) described a regression
analysis that adjust for survival and allows different conditional death rates. The methods
proposed provide a frame work for incorporating covariates, as well as for estimating the
tumor’s relative risk are illustrated with liver tumor data from the EDOI study.

Abundo et al. (1989) developed a stochastic model to study the problem of
inherent resistance by cell population. When chemotherapeutic agents are used to control
tumor growth. They have introduced stochastic differential equations and numerically
integrated to simulate expected response to the chemotherapeutic strategies as a function
of different parameters. Dewanyji et al. (1989) developed mathematical expressions for the
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number and size distribution of intermediate regions. He defined a type-I premalignant
cells as one that has arisen by direct mutation from one of the normal cells, and a
premalignant clone as the collection of premalignant cells descended from a single type-I
premalignant cell, not counting the dead or differentiated cells.

Michelson et al. (1989) developed a stochastic analogue to a deterministic model
describing sub population emergence in heterogeneous tumors. They have also described
a finite element approach for the numerical solution to the Fokker — plank or forward
kolmogorov equation. The results of the simulation supported the stochastic model, as the
basic dynamics of its deterministic counterpart.

Chiang et al. (1989) studied a stochastic model of survival distributions, where the
mortality intensity is a function of the accumulated affect of an individual’s continuous
exposure to toxic materials in the environment and his biological reaction to toxin
absorbed. They have given the formulae for the density function, the distribution function
and expectation of life time. Tan et al. (1989) developed a non-homogeneous stochastic
model for drug resistance in Chemotherapy that permits killing resistant cells with
immunostimulation. The probability of distribution of the number of resistant tumor cells,
the probability of nonresistant cells, the expected value and cumulants of the number of
resistant tumor cells are derived.

Adam et al. (1989) studied two mathematical models for the control of the growth
of a tumor by diffusion of mitotic inhibitor. The inhibitor production rate is taken to be
uniform in a necrotic core for the first model and in the non-necrotic region for the second
model. Regions of stable and unstable growths are determined and conclusions are drawn
about the limiting peripheral widths of stable tissue growth for both models.

Martin et al. (1990) discussed an optimal parameter selection model of cancer
chemotherapy which describes the treatment of tumor over a fixed period of time by the
repeated administration of a single drug. The model constructed a regimen that minimize
the tumor population by satisfying the constrains of the drug toxicity and intermediate
tumor size. Murray (1990) investigated some models of cancer chemotherapy problems
where the normal cell population must be maintained above a lower limit and a measure of
total drug used is bounded as a limit of toxicity. Swan (1990) reviewed various ways in
which optimal control theory interacts with cancer chemotherapy. he classified the models
into three broad areas, namely (i) miscellaneous growth kinetic models (ii) cell cycle
models and (iii) the other models. Designs of better chemotherapy strategies are also
suggested.
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Dewanji et al. (1991) developed two-mutation model for carcinogenesis which
postulated two-state limiting events for malignant transformation as a generalization of the
recessive oncogenesis hypothesis. As per this model, inactivation of homogeneous tumor
suppresser genes leads to cancer. This model has been used for the analysis of altered
heptic foci in rodents.

Martin (1992) investigated three types of tumor growth models namely, gompertz,
Logistic and Exponential. They observed that the tumor burden during therapy have a
little impact on survival time for exponential and logistic growth tumors. Tusnday (1992)
discussed various mathematical methods of cancer research as (i) understanding the
description of processes leading to cancer such as investigation of non-erogodic sequence
of stochastic automate (ii) diagnostic methods for estimating the growth factors by
algorithms and (iii) follow up studies using the Keplan — Meier estimator and Cox
regressions for one dimensional and multi-dimensional survival distributions.

Dewanji et al. (1993) developed a new method of estimating tumorgenic potency
that takes into account information on survival and cause of death. They described the
time to tumor occurrence (X) the time to death as a result of tumor occurrence (Y) and the
time to death from causes other than tumor occurrence (Z) through the Weibull
distribution.

Asselain et al. (1994) studied a biological based parametric model of tumor latency
with an evidence of the contra lateral breast cancer recurrence is most likely to originate
from subclinical tumor foci that pre exist at the time of treatment. Biswas et al. (1994)
measured the relative risks and longevity of a group of cancer patients using Weibull
model whose parameters are the functions of the covariates based on randomly censored
data. Mathisca et al. (1994) developed a mathematical theory based on a two-mutation
model for carcinogenesis, which is used for the quantitative analysis of premalignant
clones induced by specific carcinogenesis.

Byrne et al. (1995) derived a model for the evolution of spherically symmetric and
non necrotic tumor. They have studied the effect of nutrients and inhibitors on the
existence and stability of time dependent solution. They have also discussed the
implications of the model for the treatment of cancer and suggested that non-trivial
solution is stable and the trivial solution is non stable. Duffy et al. (1995) developed a two
parameter markov chain model to explicitly estimate the preclinical incidence rate (A;) and

the rate of transition from preclinical to clinical state (A,). They have also proposed an
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estimate of sensitivity based on the estimated parameters of the markoiv process. Carriere
(1995) studied an identifiability theorem in the theory of dependent competing risks. He
has discussed the modeling of dependence with copila functions and they have also
calculated the survival probabilities after cancer is removed by solving a system of non
linear differential equations.

Little (1995) studied some generalizations of the two mutation carcinogenesis
model of Moolgavkar, Venzon & Knudson and the multi stage model of Armitage & Doll.
He has shown that process of cell division is governed by the parameters death or
additional mutation of the penultimate stage are subjected to perturbation and there are
relatively large fluctuations in the hazard function for carcinogenesis for the model.
Morell et al. (1995) used a non-linear mixed effects model to describe longitudinal
changes in prostate specific antigen (PSA) in men before their prostate cancers were
detected clinically through a piece wise model. The time at which the PSA levels change
from non-linear to exponential could be estimated by including random terms that allow
each subject to have his own transition time.

Milklavcic et al. (1995) developed a mathematical model in which the
pharmacokinetic model was extended and transformed to the level of macroscopic
biologically detectable effect. They have used Gompertz equation for modeling. The
effect of bleomycin on tumor growth was obtained by introducing the influential
parameters.

Ying et al. (1995) studied a model for tumor development and discussed the
identifiability of parameters in the model. They have combined the results of tests for
each marginal tumor incidence rate to develop stimulataneous tests of all marginal tumor
incidences. Jam et al. (1995) developed a stochastic model for one, two and three stage
malignant transformations for embryonic and adult mice to study the influence of mutation
rate, number of stages required for transformations and number of stem cells at risk on the
kinetics of spontaneous appearance of malignant tumors.

Little et al. (1996) fitted a two mutation carcinogenesis model of Moolgavkar’s
Venzon & Knudson and generalized to lymphatic leukemia incidence data. Both Acute
Lymphatic Leukemia (ALL) and Chronic Lymphatic Leukemia (CLL) were fitted by the
model of mutation. These two mutation models are such that first mutation rate and the
susceptible stem cell population vary rapidly with age.

Alexander et al. (1997) developed a stochastic model of spontaneous
carcinogenesis to allow for a simple pattern of tumor growth kinetics. They have
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discussed a method of estimating numerical characteristics of unobservable stage of
carcinogenesis from data on tumor size at detection. They assumed that a tumor becomes
detectable when its size attain some threshold level, which treated as a random variable.
The model yields a parametric family of joint distribution for tumor size and age at
detection. Hanin et al. (1997) discussed the distribution of tumor size at detection derived
within the frame work of a stochastic model of carcinogenesis. They have considered two
versions of the model with reference to (i) spontaneous and (ii) induced carcinogenesis
having the asymptotic behaviour.

Chen et al. (1997) derived a mover-stayer mixture of markov chain models with
the complication that movers were unobservable because tumors were excised on
diagnosis. They have used a Quasi likelihood method for estimation.

Zheng (1998a, 1998b) suggested a method to compute the hazard function for the
multistage carcinogenesis model, based on the Kolmogorov forward equation, which
highlights the interplay of the forward equation, the backward characteristic method. He
also discussed the advantages and disadvantages of the forward and backward equations
are equivalent. He also reports that as far as the survival and hazard functions are
concerned, all three models given by Kendall (1960). He also discussed some of the
implications within the context of the two stage models.

Xu et al. (1998) developed a model by making the hazard function for detecting a
metastatic cancer a constant. Two quantities were considered to study the relationship
between the size of primary cancers and the occurrence of metastages, they are (i) the
distribution of tumor size at the point of metastatic transition, and (ii) the probability that
detectable metastases are present when cancer comes to medical attention. They have
proposed an estimator of the tumor size distribution at metastases and the result is applied
to a set of colorectal cancer data. Chen et al. (1998) considered a stochastic model with
exponential components to describe the phase-III cancer clinical trials data. They
presented the relationship between the hazard ratio of disease free survival (DFS) for an
active treatment versus a control treatment and the cumulative hazard ratio of survival for

the same two treatments.

1.3  FOCUS OF THE STUDY
With the brief review given in the section 1.2, it is clear that stochastic models are
more powerful in the study of cancer cell growth. Starting from the pioneering work in
1932, by Meyneard much work has been reported in the literature regarding the tumor
16



growth and its origin. The works of Laird (1964).Burton (1966), Simpson-Hersen and
Llyod (1970).  Sullivon and Salmon (1972) and Steel (1977) demonstrated the
applicability of the Gompertz growth law to tumor growth. Their results are based upon
curve fitting with actual data.

The Gompertz model is deterministic. In real situations, tumor cells are subject to
irregular growth due to random events. The irregular growth can result in tumor sizes that
are different from those predicted by the deterministic model. The irregular growth of
tumor appears to be the rule rather than exception.

To account for the irregular growth stochastic models of tumor growth have been
introduced particularly in the models of cancer cells. Iverson and Arley (1950) described
the growth of transformed cell, a progenitor of a tumor, by a pure linear birth process. In
this model, the probability of a birth is a constant, which is analogous to a constant
specific growth rate and hence a density independent model. Kendall (1960), Neyman and
Scott (1967) used a linear birth and death process to describe tumor growth. Their model
used constant birth and death probabilities and hence also density independent. Wette,
Katz and Rodin (1974) developed a stochastic model for growth of solid tumors based
upon the physical characteristics of the tumor. This leads to a density dependent
stochastic process for the mean tumor sizes. Dubin (1976) formulated a density dependent
birth and death process to describe the tumor growth subject to immunological response.
He used various approximations to obtain information about the process. Swan (1977)
described a method for obtaining the exact solution to Dubin’s model. Hanson and
Charles Tier (1982) developed a stochastic model for tumor growth which is the diffusion
limit of a continuous time density dependent branching process.

Dewanji et al. (1989, 1991) have developed stochastic model for cancer risk
assessment through the number and size of the malignant clones with the assumption that
once a malignant was generated, it gave rise with probability 1 to a malignant tumor after
a suitable lag time. However to take the explicit account of growth kinetics of malignant
cells, that are of cells that makeup the foci within the foci. They have also developed
another stochastic model by incorporation a birth-death process for malignant cells.
Birkhead (1986) developed a stochastic model using the linear birth and death process
with random spontaneous mutation by considering tumor cells are assumed to proliferate
by division and may lost to the population.

A close look into the cell kinetics of tumor reveals that the spontaneous mutation,
proliferation and loss processes play a dominant role for the growth and development of
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tumor. The mutation and proliferation process can be described as follows. The normal
cell can be divided into two normal cells (or) a normal cell can be divided into a normal
and mutant cell (or) a mutant cell may be divided into two mutant cells (or) a normal cell
may be lost (or) a mutant may be lost in a small time interval. It is also evident that the
growth rates of normal and mutant cells are not homogeneous due to recessive
oncogenesis hypothesis, according to which inactivation of both alleles of a specific genes
leads to cancer. So in order to analyse the tumor growth more close to reality, it is needed
to develop a density dependent stochastic model with heterogeneous (non-homogeneous)
growth and loss rates for normal and mutant cells.

In this study, an attempt is made to fill this gap in this area of research. The First
part of the study deals with development of a bivariate stochastic model for a cancer cell
growth with the assumption that the growth and loss processes of normal and mutant cells
are all poisson with different rates. This model is extended to incorporate the receissive
oncognesis hypothesis by assuming that the growth processes of mutant cells is a sum of
natural growth and growth due to inactivation of both alleles due to specific genes. In
order to analyse the drug efficiency in cancer chemotherapy, another stochastic model is
developed with the assumption that the loss process of both normal and mutant cells is a
sum of two processes namely, due to natural loss and loss due to chemotherapy. Using the
difference differential equations, the joint probability density function of the normal and
mutant cells is obtained at any given time ‘t’. The mean number of normal and mutant
cells, the variability of the number of normal and mutant cells and the covariance between
the number of normal cells and number of mutant cells are obtained explicitly as function
of time. Another variation in these models is considered by developing a two stage
stochastic model for malignant cells. Once a malignant cell was generated, the malignant
cell may become extinct without mutation or may divide into mutant cells and then it
become extinct. So there are two stages attributable to the malignant cells. The joint
distribution of the number of malignant cells in both stages is derived in order to obtain
the mean tumor size. The variability at a given time ‘t’, the probability of a malignant cell
duration in the tumor are also obtained and analysed. The various characteristics of this
model are derived and analysed.

Cancer chemotherapy is generally prescribed on cyclic basis. When an anti cancer
drug is induced to the body, both normal and mutant cells are killed. The white blood
cells count falls to low levels and care is needed to evaluate the status of the patient. If the
outcome is not favorable, life threatening fever can develop. An interval of time is
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specified, during which the patient can (hopefully) recover. But, the tumor will also grow.
At the end of this recovery period the cycle of chemotherapy is usually begins again. In
order to have affective administration of chemotherapy, this situation is modeled through
developing a stochastic model for mutant cell growth under chemotherapy. using the
difference differential equation, the Laplace transformations of the tumor size probabilities
in both states of the patients namely, under recovery and under chemotherapy are
obtained. Assuming the recovery period follows an exponential distribution, the mean and
variance of the tumor size and the probability of extinction of the tumor are obtained under
the equilibrium conditions.

These models are very useful for understanding the origin and development of
malignant tumors and also useful for effective administration of chemotherapy. These
models also include some of the earlier models as particular cases for specific or limiting
values of the parameters. The study also focused on development of stochastic models for
cancer growth. The statistical measures like average number of normal cells, average
number of mutant cells, variances of normal and mutant cells, covariance between number

of normal and mutant cells are derived through the developed model.

1.4  ORGANIZATION OF THE BOOK

This study is presented into five chapters. The chapter wise outline of the book is
as follows. Chapter one of the book is to give a brief resume on previous research on
cancer cell growth models. A brief introduction of the problem, the motivation of the
present work are also given. The short description on the organization of the chapters is
presented. Chapter two is on the development and analysis of stochastic models with
heterogeneous growth rates and loss rates for normal and mutant cells under spontaneous
mutation, proliferation and loss processes. The recessive oncogenesis hypothesis is also
incorporated in the model. Another bivariate model for normal and mutant cells is
developed and analyzed with the assumption that the loss due to drug administration. The
various characteristics of the models are derived and analyzed under transient conditions.
Chapter three is devoted to study the two stage stochastic models for malignant cells. The
joint probability generating functions of number of malignant cells in both states are
derived and analyzed. The duration of the malignant cell in the tumor is analysed through
deriving the survival probability. The mean and variance of the tumor size are also
obtained and analysed.  Chapter four is concerned with the development and analysis of
the stochastic model for malignant cell growth under chemotherapy. The Laplace
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transformations of the tumor size distribution when the patient is under recovery and
chemotherapy are derived and analysed. The mean and variance of the tumor size and the
probability of extinction of the tumor are derived under equilibrium conditions. Chapter
five is to summarized the results obtained in the earlier chapters with conclusions. The

scope for further study in this area of research is also mentioned.
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Chapter — 2

Stochastic Model for Tumor Growth with Spontaneous

Mutation and Proliferation
2.1 INTRODUCTION

The cell kinetics plays a vital role in the growth of tumors. The spontaneous
mutation and proliferation process of cells are random in nature. The growth of a tumor
can be analyzed through the nature of spontaneous mutation and proliferation of cells in
the tumor. Several authors have developed stochastic Models for the growth of mutant
cell population with the assumption that the growth rates of normal and mutant cells are
homogeneous. However it is interesting to note that the growth rates of normal and
mutant cells are not homogeneous, since the proliferation of normal and mutant cells are
not homogenous, since the proliferation of normal and mutant cells is effected by various
factors. In order to analyse the tumor growth, a Bivariate stochastic model for normal and
mutant cell growth with heterogeneous growth and loss rates is needed.

In this chapter, a Bivariate stochastic model for normal and mutant cell growth is
developed with an assumption that the growth and loss processes of mutant and normal
cells are Poisson with different growth rates and loss rates. Using the difference
differential equations and the cumulant generating functions, the expected number of
normal and mutant cells at time t, the variability of the normal and mutant cells and the
covariance between normal and mutant cells are also derived and analyzed. In section 3,
this model is extended by considering that the growth of mutant cells is much faster than
the normal cells, because of the fact that the growth of mutant cells is a sum of natural
growth and the growth due to inactivation of allele gene. The Joint probability generating
function of normal and mutant cells at time ‘t’ is derived. The tumor behaviour is
analysed by deriving the various characteristics of the model. In section 4, a stochastic
model for mutant and normal cell growth when the patient is under chemotherapy is
developed by assuming that the loss process of normal and mutant cells is the sum of
natural loss and loss due to chemotherapy. The Joint probability generating function for
the mutant and normal cells is derived by using the difference differential equations and
the drug sensitivity is also analyzed. These models are very useful for analyzing the tumor

growth and to administer the chemotherapy more effectively.
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2.2

STOCHASTIC MODEL FOR NORMAL AND MUTANT CELL GROWTH
WITH HETEROGENEITY

In this section, the author has considered the proliferation of both mutant and

normal cells can be approximated by stochastic processes. It is assumed that the growth

process of the normal cell is Poisson with parameter b,. The growth process of the mutant

cell is Poisson with parameters ‘e’ and ‘b;’ for normal cell to mutant cell and mutant cell

to mutant cell respectively. The loss process of normal and mutant cells are also Poisson

with parameters d; and d, respectively. Also considered that the proliferation of cells are

independent. With these assumptions, the postulates of the model are.

1.

8.

The probability that the normal cell divides in to two normal cells during a small
interval of time ‘h’ is b,h+o(h).
The probability that a normal cell divides into one normal and one mutant cell

during the small interval of time ‘h’ is ah+o(h).

. The probability that a mutant cell is divides into two mutant cells during a small

interval of time ‘h’ is bh+o(h).

The probability that a normal cell is lost during a small interval of time ‘h’ is
dh+o(h).

The probability that the loss of a mutant cell during a small interval of time ‘h’ I
d,h+o(h).

The probability that there is no growth or loss of either normal cell or mutant cell
during a small interval of time ‘h’ is 1—(bl +b,+a+d, +d2)h+0(h).

The probability that the occurrence of other than the above events during a small
interval of time ‘h’ is o (h) and

The events in non-overlapping intervals of time are stochastically independent.

Let Py, m (t) be the probability that there are ‘n’ normal cells and ‘m’ mutant cells at time

‘t’. with the above postulates, the differential equations of the model are:

P, (t+h)=P,,  (t)(m=1)bh+P, (t)nch+P, . (t)(n—1)bh

+P . (1)d, (n+1)h+P, ., (t)d,(m+1)h
+P (t)[l—(mb1 +no.+nb, +nd, +rnd2)h:|+0(h); m,n>1 (2.2.1)
P, (t+h)=P,,(t)2dh+P, (t)d,h+P , (t)[1-(b, +a+d,)h |+o(h) (2:22)
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P, (t+h)=P,,(t)dh+P,,(t)2d,h+P,, (t)[1-(b, +d,)h |+o(h)

Poo (t+h) =P, (t)dh+Py, (t)d,h+Py, (1) +0(h)

Therefore the difference differential equations of the model are

—P (t) (mb +no+nb, +nd, + md ) m (t)+(m—1)blenH (t)

+nobP, ., (t)+b,(n-1)P,_,  (t)+d, (n+1)P,,. .. (1)
+(m+1)d, an+|( ); m>1n2>1
d
aPm (t)=—(b,+a+d,)P 4 (t)+2d,P, ,(t)+d,P, (1)
d
apo,l (t)=—(b, +d,)P,, (t)+d,P, (t)+2d,P, , (1)
d

ap(),o (t) = leI,O (t)"’dzpo,l (t)

With the initial condition PNo-Mn (0) =1

(2.2.3)

(2.2.4)

(2.2.5)

(2.2.6)

(2.2.7)

(2.2.8)

i.e. initially when the tumor is identified there are Ny normal cells and My mutant cells in

the tumor.

Let P(x,y;t) be the Joint probability generating function of P,

(% y:t) =22 x"y"P, . (

m=0 n=0

(t). ie.

(2.2.9)

Multiplying the equations (2.2.5) to (2.2.8) with x"y" and summing over all m and n; we

have

%P(x, yit)= ZZ [—(mbl +no+nb, +nd, +md, ) x"y"P, ,, (t)
m=1 n=1

+(m=1)bx"y"P, () +nox"y"P, ., (t)
b, (n1)X'YB, (04 (DY, (1)
+(m+1)d,x"y"P, ..., )]+2d,xP2.0 (t)+dxP,, (t)
—(b, +a+d,)xP,, (t)+d,yP,, (t)+2d,yP,, (t)
—(b,+d,)yP,, (t)+d,P, (t)+d,P,, (t)

Reorgansing the terms and after simplification the equation (2.2.10) becomes,

23

(2.2.10)



P07 Y I (Y R )y S Ty |
+d {zz IRRSE SRS 2 e }
+b{x2;z(n—l)x"’2y o AEE Y, }
d, [xgz(m+)y“"2Pmm4W _ yZmeyP(}
+o{xy22nx" YR o —xZan"’ly‘“Pn’mm} (2.2.11)

m n

Further simplification of the equation (2.2.11), will give
%P(x,y;t)zbl {yZ%P(x,y;t)—y%P(x,y;t)}
") [%P(x,y;t)fng(x,y;t)}
+b, [ngP(x,y;t)—X%P(x,y;t)}
+d, {;yP(x, y;t)—ysyP(x,y;t)}

0 0
+o| xy—P(Xx,y;t)—x—P(X,y;t 2.2.12
[yax (x.y5t) = (x.y )} ( )
This implies that

P(x,y;t) :[x2b2 +x(ocy—dl -b, +(x)+dJ§P(X,y;t)

+|:b1y2—(b1+d2)y+d2]%P(x,y;t) (2.2.13)

We can obtain the characteristics of the model by using the joint cumulant

generating function of P, m( ) . Taking x =¢" and y=¢" and denoting K(U, V;t) as the

Joint Cumulant generating function of P, (t) , the equation (2.2.13) gives

0 . vogen]l
gK(u,v;t)z[bze —(d,+b,+a)+ae’ +de ]%K(u,v;t)
v 10
+[be’ (b, +d,)+d,e :.EK(u,V;t) (2.2.14)
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Let m,(t) denote the moments of order (i,j) of normal and mutant cells at time ‘t’.

Then the differential equations governing m, (t) are obtained as

gmm(t)z(bz d,)m,, (1) @2.15)
%mm(t):amlo() (b, —d,)m,, (1) (2.2.16)
i (1) = (b my (£)+2(b, ~ )y (1) 2.2.17)
%mm():(b —~d, +b,—d,)m,, (t)+am,, (1) 22.18)
0

amovz(t)=2amu(t)+am170(t)+(b1+d2)movl( )+2(b,—d,)m,, (t) (2.2.19)
From the equation (2.2.15) we have
m,, (t)=Nge™ " (2.2.20)
Substituting (2.2.20) in the equation (2.2.16), we get

%mo_l (t)+(d, —b,)my, (t) = aNe™ " (2.2.21)
Solving the equation (2.2.21), we get
(by=d))t (by=dy )t
my, (1) = aNge 4 aNge
(d,+b,-b,—d,) (d,+b,-b,-d,)

+ M) (2.2.22)

On simplification the equation (2.2.22) become
aN,

R — 2.2.23
d,+b,—(b,+d,) ( )

m,, (t)=A [e(bz'd' S gl J +Me" ™" Where A=

Consider the equation (2.2.17) and substituting the equation (2.2.20) in (2.2.17), we have

d )t
< Ma0(6)+2(di=ba)my s (1) = (b, +d, )Nyel ™) (2.2.24)
Solving the equation (2.2.24), we get
my o (1) =| 22 et [ Dot oo (2.2.25)
' dl _bz 27 %
On simplification, the equation (2.2.25) become
— (by=dy)t (by=dy)t |, _ bZ +dl
m,, (t)=Be [l—e J,WhereB— i N, (2.2.26)
1722

Consider the equation (2.2.18) and substituting the value of m,,(t) as in the equation

(2.2.26), we have
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%m,,l (t)+(d, +d, —b,—b,)m, , (t) = aBe " [1 —e““fd”‘] (2.2.27)

Solving the equation (2.2.27), we get
b, +d (by—dy)t
m]’l(t): 0“( 2 I)Noe(bzdl)‘|: 1 _ € :|
(d,—b,) d,-b, b,+d,-b,—d,
+ 0'(bz +d, )No (by+by—dy—d, )t
(d,=b,)(b,+d,—b,—d,)
On simplification the equation (2.2.28), gives

_h _ _ (by=dy)t
m,, (t)= Deb:dt l:(bz +d, b, 31 )_b(dz by)e +e(b"d’)}
1 2

(2.2.28)

a(b,+d; )N,

(d,~b,)(b,+d, -b,~d,) (2.2.29)

where D =

consider the equation (2.2.19) and substituting the values of m, ,(t),m,, (t) and m,,(t)
as in the equations (2.2.20), (2.2.23) and (2.2.28) and solving it, we get

m,, (1) =) [(E FH+T)( ) 1)+ B4 1)

HG (el )= (1K) (e 1)

Where A=— *No B= (b”dlj N,
d,+b,—d, b, d, —b,

B a(b, +d,)N, . _ 20D(b, +d,—b,—d,)
(d,-b,)(d, +b,—d,-b,)’ (d,—b,)(b, —d,)
FeoD dz—b,z; _ 2aD CH= o :

(dlsz) b1+bz_d1_d2 bz_dl

I=A(bl+d2). J=A(b2+d2). Ko M,

(b,—d,) (b,—d,) b, —d,
...(2.2.30)

From equations (2.2.20), (2.2.23), (2.2.26), (2.2.29) and (2.2.30) the values of m,,(t),
my, (t), my(t), m,(t) and m,(t) are computed for various values of the parameters

a,b,,b,,d,,d,; N;,M, and presented in Table (2.1.)
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From the equations (2.2.20), (2.2.23) and Table (2.1) it is observed that the average
number of mutant cells at any given time is an increasing function of ‘e’ when other
parameters are fixed. We also observe that mg(t) at any given time is a decreasing
function of ‘dy” and m; o(t) in a decreasing function of ‘d;” when other parameters remain
fixed. It is further observed that my,(t) at any given time is an increasing function of b;
and b, when the other parameters are fixed. It is also observed that m;o(t) is independent
of b;. The expected number of both mutant and normal cell populations are increasing
functions of time ‘" when (o+b,+b,)>(d,+d,). It is further observed that the
expected number of both mutant and normal cell populations are decreasing functions of

‘t’ when (o+b, +b,)<(d,+d,). The expected number of mutant cells is an increasing
function of M, when (o+b, +b,)>d, +d,; d, >d,. The expected number of both mutant

cells and normal cells are increasing functions of Ny when other parameters remains fixed.
The average number of normal and mutant cells are increasing function of ‘t” for b, >d,
and b, +a >d, respectively. Similarly it is observed that the average number of mutant
cell is a decreasing function of't when b, + o < d, for fixed values of d; and d,.

From the equation (2.2.26), (2.2.30) and Table (2.1), the variance of the number of
the mutant cells is an increasing function of ‘o’ as the other parameters remain fixed. It is
also observed that the variance of the number of mutant cells is a decreasing function of d,
when other parameters remain fixed. The variances of number of both normal and mutant
cells are increasing functions of b, when other parameters are fixed. The variances of
number of both normal and mutant cells are decreasing functions of ‘d,” when the other
parameters remain fixed. The variance of number of normal cells is an increasing function
of by as the other parameter are fixed. It is further observed that the variances of both
normal and mutant cells are increasing functions of ‘t” when b, +b,+a>d, +d,. The
variance of number of mutant cells is a decreasing function of ‘t” when b,<d, and the
variance of number of normal cells is an increasing function of time ‘t* when b,<d,. The
variances of number of both normal cells and mutant cells are increasing functions of ‘Ny’
when the other parameters remain fixed. The variance of the number of mutant cells is
decreasing function of ‘My” when other parameters remain fixed.

From the equation (2.2.29) and table (2.1) we observe that the covariance between
the number of Normal and mutant cells is an increasing function of o, b, and b; as the

other parameters remain fixed. It is also observed that m;;(t) is a decreasing function of d;
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and d, as the other parameters remain fixed. It is also observed that there is a positive
dependence between the number of normal and mutant cells. It is further observed that the
covariance between the number of normal and mutant cells is an increasing function of ‘t’

when b, +b, +a>d, +d,. It is also observed that the covariance between the number of

the mutant cells and normal cells is an increasing function of Noas M, <N, .

2.3 STOCHASTIC MODEL FOR MUTANT CELL GROWTH WITH
INACTIVATION OF ALLELE GENES
In this chapter, the author has analyzed a stochastic model for normal and mutant
cell growth after the tumor is formed. Once the tumor in formed, the proliferation of
mutant cells is much faster than the proliferation of normal cells. Hence the proliferation
process of normal and mutant cells are not homogenous. This can be modeled by
incorporating the additional proliferation process for the growth of the mutant cells which
may be due to inactivation of allele genes. In this section we assume that the proliferation
processes of (i) the normal cell to two normal cells (ii) normal cell to one normal and one
mutant cell (iii) mutant cell to two mutant cells and (iv) the additional proliferation due to
inactivation of the allele are all poisson with parameters b-o., o, b and f§ respectively. The
loss processes of the normal and mutant cells are also poisson with parameter ‘d’ with
these options, the postulates of the model are
1. The probability that a normal cell is divided into two normal cells during a small
time interval ‘h’ is (b-a) h + o (h).
2. The probability that a normal cell divided into one normal and one mutant cell
during a small time interval ‘h’ is o h +o (h).
3. The probability that one mutant cell divided into two mutant cells during a small
time interval ‘h” is b h + o (h).
4. The probability that one normal cell is divided into one normal and one mutant cell
due to inactivation of allege gene during a small time interval ‘h’ is  h + o (h).
5. The probability that one mutant cell is divided into two mutant cells due to
inactivation of allele during a small time interval ‘h’ is Bh + o (h).
6. The probability that one normal cell is dead during a small interval of time ‘h’ is d
h+o (h).
7. The probability that one mutant cell is dead during a small interval of time ‘h’ is d

h+o (h).
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8. The probability that the occurrence of other than the above events during a small
interval of time ‘h’ is o (h) and
9. The occurrence of the events in non-over lapping interval of time are stochastically

independent.

Let P, ( ) be the probability that there are ‘n’ normal cells and ‘m’ mutant cells at time

n,m

‘t’. With this structure the difference equations of the model are

P, .(t+h)=P . (t)(b+B)(m—1)h+P,  _ (t)(a+B)nh
+P, 1 (t)(b—a)(n-1)h
+P, . (t)d(n+1)h+P,

n,m+l

+P, . (t )[1—(m+n)(b+ﬁ+d)h+o(h)1

(t)d(m+1)h

Z ) mn>1 2.3.1)
R_O(Hh):pw(t)zdhm,l(t)dh+pw(t)[l_(b+ﬁ+d)h+o(h)2} 23.2)
By, (t-+h) =Py, (t)dh-+ P, ,(t)2dh + By, (1) 1-(b+B-+d)h-+o(h)’ ] (23.3)
P, (t+h)=P(t)dh+P,, (t)dh+P,,(t)+o(h) (23.4)

Therefore the difference differential equations of the model are

%Pn‘m(t)=—(m+n)(b+l3+d) P, () +(m=1)(b+B)P, ., (1)

+(a+B)nP, ,, (t)+(b—c)(n=1)P,,, (t)

+d(n+1)P,,, . (t)+(m+1)dP, . (t)form>=1n>1 (2.3.5)
%PLO(t):—(b+B+d)P1Y0(t)+2dP2‘0(t)+dPlyl(t) 23.6)
%pm (t)=—(b+p+d)P,, (t)+dP,, (t)+2dP, , (1), and 3.7
%pm (1) =dP,, (t)+dP,, (1) (2.3.8)

Let P(x,y;t) be the Joint probability generating function of P, ,, (t),

ie P(x,yt) Z:Z:x"y'“Pn m( (2.3.9)

m=0 n=0

Multiplying the equations (2.3.5) to (2.3.8) by x" and y™ and summing over all n and m,

and after simplification we have

; (x.yit)=—(b+p+d {ZZ m+n)x"y"P, , (t )}

m n
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+d[22(n+1 X"y"P, o (t +ZZ (m+1)x"y"P,,.,, (t )}

m n

b+B{sz DX"Y"P, ()}
+(b—a){22(n x"y" nlm(t)}

m n

+(a+p) {Zan Y'P, } (2.3.10)

This implies

%P(x,y;t):—(b+B+d){y%}’(x,y;t)+x£l’(x,y;t)}
+d{%P(x,y;t)+%P(x,y;t)}
+(b+|3)[y2;yP(x,y;t)}+(b—a)[x2;;P(x,y;t)}

+(a+ﬁ)[xy§P(x,y;t)} (2.3.11)

On simplification the equation (2.3.11) become

%P(X’y;t) :.:(b"'B)yz —(b+ﬁ+d)y+d]%P(x,y;t)
+[—(b—a)x2—{(b+B+d)—(a+B)y}x+dJ£P(x,y;t) (23.12)

The equation (2.3.12) can be solved by using lagrange’s method we have the following

auxiliary equations.

_dt_ dx _ dy
I x*(b—a)+x[(a+B)y—(b+p)-d]+d y*(b+B)—y(b+p+d)+d
() (ii) (iii)
dp(x,y;t
_dp(xy3t) (2.3.13)
0
(iv)
Consider the relation (iv) in the equation (2.3.13), and on simplification, we have
6, = P( X,V; t) where 0, is an integrating constant (2.3.14)

Considering (i) and (iii) of the equations (2.3.13), we have.
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_de_ dy
1 yz(b+B)—y(b+B+d)+d
Which implies that

1
T orpy-ajon®

The solution of this equations is

b
—t=log {[M)y_d]d“’*m (y- 1)@;@ (2.3.15)

b+B

On simplification the equation (2.3.15) become
0, = [(b + B) y—-d J o (o)t
I-y
Where, 0, is the integrating constant. (2.3.16)
Consider the relations (ii) and (iii) in the equations (2.3.14) then

dx dy

< (b—o)rx[(@+B)y_(b+prd)] ¥ (b+p)(b+prd)y+d @317
The equation (2.3.17) can be rewritten as
dl: xz(b—a) XI:(OL+B)y7(b+B+d):|
dy [y(b+p)-d](y-1)  [y(b+p)-d](y-1)
d (2.3.18)

T (o+B)-d](y-1)

The equation (2.3.18) is in the form of the Ricatti first order differential equation [Piaggio

(1950)]. x =y is a particular solution and the substitution of x =y+—— in equation

V(y)
(2.3.18) leads to
av_[2(0+p)~(a+B)]y-(b+p+d) (a-b)
dy [y(b+B)—d](y-1) Y FCOEI ) (2.3.19)

Solving the equation (2.3.19), we get

v(y)=[(b+5)y—d]ﬁ(1—y)"3[(bﬂa—d)j {(b+;3)y—d}b%" (1-y)""dy-+0,]

(2.3.20)
Where, 0, is the integrating constant. Rearranging the equation (2.3.20), we have
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V()= (b+p-d)A F[l B’l’b+[3+1’b+[3)+93(by d)es (1-y)
(b+B)’ —(b+p+d)+(a+p)d

b+p—d
_b-a-d ,_(b+B)y—d

Where A=

“brp-d’ Ty
and F is the hypergeometric function (2.3.21)
Using the initial condition that at t=0 there are ‘N’ normal cells and ‘M,’ mutant
cells in the tumor and eliminating the integration constants from (2.3.15), (2.3.16) and

(2.3.21), then the general solution of the equation (2.3.9) after simplification is
diz e® V' dze™ b+p+ze™ i}
P(x,y;t)= - &t : (o(z)e™)
b+p+ze b+B+ze b+B+z
—_1No
1 b+B+z b
ol
X—-y b+p+ze

Wp(l—&l,i+l, ;Zj (2.3.22)
(b+p-d)A b+p b+p

using the equation (2.3.22) we can analyse the model behaviour. The probability

Where §=b+p—dand ¢(z)=

that there are ‘n’ normal cells and ‘m’ mutant cells at time ‘t” in the tumor can be obtained

by expanding the equation (2.3.22) and collecting the coefficient of x" and y™.

The expected number of normal cells in the tumor at time ‘t’ is

(1) =2 P(x,y3t)
' ox

x=1,y=1

From equation (2.3.22), we have

m,, (t)=N,e® " (2.3.23)

The expected number of mutant cells in the tumor at time ‘t” is

m,, (t) :%P(x, y;t)

x=l,y=1

From equation (2.3.23), we have

m,, (t) —A |:e((x7d)( _ e((mﬁ)fd)r } 4 Moe(bﬂH)‘ where, A = [L"'BJ N, (2.3.24)
. o—P
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The variability of the normal cells in the tumor at time ‘t° is

o o b+a+d
m, , (t)=B.e" " (1 —el® d)‘) where, B= (m)NO (2.3.25)

The covariance between the normal and mutant cells at time ‘t° is

m,, (t) _ De(b+a—d)t (1 _e(b+[5—d)t ) 4 Ee(2h+a—2d)t (e‘“ _ e[}()

Where D= B(OHB);E: B(o+P)
d-B-b B-a

and B is as given in the equation (2.3.25)  (2.3.26)

The variability of the mutant cells in the tumor at time ‘t’ is

m,, (t) — 2brpd)e |:(e(<x—[’;)t _ l)(F + H) 4 (e(a+d72[’;—b)‘ —1)(L 4 1)

()4 G 1)+ (M=K —1)}

Where inz(oH_B)D ; inz(oH—B)D
oa+d-2B-b B—oa
G:[m]E. po2(eth)
a-B) " B-a
(a+B)N, (b+B+d)M,
[=——— M=~_" "/"0
a—-2B+d-b (-b—p+d)

e Esk
A is as given in the equation (2.3.24), B is a given in the equation (2.3.25) and D,
E are as given in the equation (2.3.26). (2.3.27)
From equations (2.3.23) to (2.3.27) the values of
m, ,(t), m,, (t), m,,(t),m,,(t) and m,,(t) are computed for given values of

o,B,b,d,M,, N, and t are presented in table (2.2).

35



9¢

G€0'9 20€°0 S¥8°0 S6'1| 8¢S0| ¢
£€CS1 £0C°0 414! 668C| 1691 1 € C| ¥80 | SE€1'0| ¥81'0| 8CI'0
€L1'C 6v1°0 60€°0 60| ILT°0 78°0
LE9'6 8LS0 9960 ¢SST| YLV O £9°0
S'ov 432! 696°C 1€0°9 49! 9%°0
9L6'¥8¢ LTSV SLS'S 706°11 17C| S € C| Te0| SEI0| ¥81°0| 8CI'0
OIXEPTT | 01X809°1 SySIl 98C9LY | 99S°L 78°0
QOIXITTL | O0IX9€1°6 8IL€ES | OIXITET | 86°0C £9°0
LOIXIETE | ,01X986°€ | 0IX€0T | OIXITIE | 8S6F 970
LO0IXP90°1 | OIXSLTT | 01X€96°G | OIXIOI9 | L8L6| S € C| TE0| S¥80| L¥80| SLI'O
OIXP80°L | LOIXEVT'T S00'I9L | 0IX60T'1 | 6£°CC £86°0
LOIXTIVL | 0IXE6T] 97866 £62°69¢ | 9789 L0
LO1X20€Y S6S'1L STT8 ¥C8'8L | 8911 8¢r°0
8L¥'8SC 820y €SL°0 CLI91 | S0€0| § 3 C| 980 | ¥CI'0| #8€0 | SLTO
SILTYE 129°C1 ILEL 8¥8'v1 | 89¢'1 ¥y 0
SyTTTT 81S°6 LS 906°Cl | 991'1 26¢£°0
LLS €6 1S [44%3 CLY'8 | 8180 12¢°0
10111 $€6°0 €SL°0 ST | S0E0| S € C| 981 | #C1'0| #8€0 | SLTO
01%600°C LE9°E8 885°S¥ €60
OIXE9LY Ivy'Cs 666°¢€ 6vL0
LL066 ¥60°8¢ £50°C ¥8%°0
16L°16 1L9°¥%1 £€9°¢l SLL'T | 120C| S € C| 980 | ¥CI'0| 9610 €590
L0IX610°9 | 0IXST8'S 8I1TSI9 86L°SLS | 88'ST €SL°0
LOIXE0V'S | 01X29¢°€ 969°6C¢ 8I1€C9Y | €€81 89°0
L01XC0T'1 GSL801 VLS'L LyL'e6l | STI'C £5C°0
01X99%°6 SET61 69C'1 9Sy'Syl | €vL'0| S € | 90| vEI'0| 9860| €¥#0°0
0w T 0Ty 0y ol ) [UN] OJAI P q ﬂ 0

sa9joweaed dy) Jo san[eA snoLIeA 10§ (3)W0w (3) ux “(3)0%w “(3)0Twx JO SAN[BA Y I,

- H14dVL



LE

OIXLTY'T 7S v0C S91'v6 cIy'0cl | T191 14
01X686°1 801°¢€S1 £29°0L LEO'86 | 60°CI 3
RU42 ! CLTT01 280°Ly C99°SL | 7908 [4
OIXTT 9¢'1§ 1¥7S°€C L8TES | 180V | T ! C| TE0| S¥80| L¥80| SLI'O
LOS' €1 9er 0 99°'1 I61'€ | TLTI ¥
L8E01 LTE°0 STl CLSC| ¥56°0 €
L9T'L 8170 £8°0 ¢S6'1 | 9¢€9°0 [4
Lyl'y 601°0 540 el | 8IE0| € ! C| ¥80 | SEI'0| S81'0| 8CI'0
8LY'C 6901 14
12¢°C £66°0 3
¥91°C L16°0 [4
L00'C 6v1°0 60€°0 80| ILIO| S € 1| #80| SE€I'0| 6¥1'0| 8CI'0
L0IXETE T 01X6£0°8 14
,0TX€6I1°1 OIXT°L 3
,01X3790°1 OIX191°9 [4
0IX6€€°6 | 0IX6LTT O01X96°G | OIXCCTS | L8L6| S € 1| TE0| S¥80| L¥80| SLTO
01099 | ,01XCIST | 01XTEr | OI1XS9SL | SLSK |
,01%668°¢ O01%99°1 1Z8'1¢€¢ 8¢8'G6€ | 8TYC| €
01X686°1 801°€S1T £€29°0L LEO'86 | 60C1 | T
444 9668 S69'11 G98°'ICT| €209 | 1 € T| CE0| SP80| L¥8O| SLI'O
S8°0 950°0 201°0 I18€°0| #S00| L
¥91°C 6v1°0 60€°0 L16'0| TILTO| S
0w T (X371 ¢ 0w 0Ty ) [UN] OJAI P q Q 0




From the equations (2.3.23), (2.3.24) and from Table (2.2), we observe that
expected number of both normal and mutant cells at any given time are increasing
functions of ‘b> when other parameters remain fixed. It is further observed that the
average number of both normal and mutant cells at any given time are decreasing
functions of ‘d’ when other parameters remain fixed. The expected number of mutant

cells at a given time is an increasing function of . It is also observed that both mm(‘) and

t . . . .
mm() are increasing functions of ‘e’ when other parameters remain fixed. We further

observe that the average number of mutant cells and normal cells are increasing functions
oft, when (b+PB+a)>d and they are decreasing functions of time t when (o +B+b)<d
The average number of mutant cells is an increasing function of My. The average
number of normal cells is an increasing function of Ny when other parameters remains
fixed for the given period ‘t’. It is also observed that the expected number of normal cells
in the tumor are not influenced by . The value of mm(() can be reduced by activating the
allele gene in the tumor.
From the equations (2.3.25), (2.3.27) and table (2.2) we observe that the variances
of number of normal and number of mutant cells are increasing functions of ‘d’, when

other parameters remain fixed. It is also observed that my, (t) is a decreasing function of

b and m,, (t) is an increasing function of ‘b’ when other parameters remain fixed. The

variance of number of mutant cells is an increasing function of ‘B’ and variances of
number of both normal and mutant cells are increasing functions of ‘o’ at given time ‘t’
when other parameters remain fixed. It is further observed that the variances of number of
both normal and mutant cells are increasing functions of ‘t” when a+f+b>d and they are
decreasing functions of ‘t” when (o+f+b)<d. the variance of number of mutant cells is an
increasing function of My and the variances of number of both mutant and normal cells are
increasing functions of Ny at a given time ‘t” for other parameters being fixed.

From the equations (2.3.36) and table (2.2) we observe that the covariance between
number of mutant and normal cells is positive and increasing function of ‘d’, my;(t) is
positive and decreasing as ‘b’ is increasing. The dependence between normal and mutant
cells is positively increasing as the time increases for the given values of other parameters.
We also observe that my;(t) is an increasing function of a and B m;(t) is a decreasing

function of ‘t” as (o+p+b)<d and an increasing function of t as (a+fB+b)>d. It is further
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observed that the covariance between the number of normal cells and mutant cells is an
increasing function of Ny and not influenced by My when other parameter are fixed. This

model includes the model given by Birkhead )1986) when —0.

24  STOCHASTIC MODEL FOR NORMAL AND MUTANT CELL GROWTH

UNDER CHEMOTHERAPY

In this section we develop a stochastic model for the growth of normal and mutant
cells when the patient is under chemotherapy. In addition to the assumptions made in
section 3, here we assume that the loss process of the normal and mutant cells is a sum of
two loss processes, one is due to natural loss and the other is due to drug induction. It is
also further assumed that the loss processes due to natural and due to drug are also poisson
with parameters ‘d” and ‘O’ respectively. With these assumptions, the difference

differential equations of the model are

B () =—(m+n)(b+Brd )P, , (4 (m=1) (6B, (1)
(o B)IP, .1 (1)+(b=0) (n=1)P, 1, (1)
H(d+0)(n+1)P, 1, (1)+(d+0)(m+1)B,,.. (05 m>L =1 (241)
SR (0= (0B d+0)P, (1)+2(d+0)Pyy (1) +(d+O)P, 1) (242)
SR () =—(0+ B+ +0), (1)+2(d+0)R, (1) +2(d+0) s (1) 243)
SR (6)=(d+0)Pyy (1) +(d+O)PR, (1) 244)

With the boundary condition Py, (0)=1

Let P(x,y;t) be the Joint probability generating function of P, (t),

P(x,yit)=> > x"y"P, . (t) (2.4.5)

m=0 n=0
Multiplying the equations (2.4.1) to (2.4.4) by x"y™ and summing over all ‘n” and ‘m’, we

have
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%P(x,y;t):—(b+B+d+9)|:y%P(x,y;t)+X%P(x,y;t):|

+(d+9){%P(x,y;t)+%P(x,y;t)} +(a+B)[xy£P(x,y;t)}

+(b—a)[x2 %P(x,y;t)}+(b+ﬁ)|:y2 %P(x, y;t)} (2.4.6)
Further simplification of the equation (2.4.6) gives

L (x,y50) [ (b= +{{oc+ )y (b4 B+ o)} x-+(a+0) | 2 P (x.yet)

+[(b+[3)y27(b+[3+d+6)y+(dfe)]%P(x,y;t) (2.4.7)

Solving the equation (2.4.3) as done in section (2.3) we get,
d+0)+ ot Mo —dt -5t

P(x,y:1) = (d+9) Z:( d+e+ze75 [ b+Brze
b+B+ze b+B+ze™ b+B+z

o(ze™ )+[;_¢(Z)]( _b4Btz j[bAﬁB] e[‘%]

b+p+ze™

(b+B) +(d+6)(a—b)

Where 3=b+p-d-06 A=

(b+p—d—6)
_(b+B)y—(d+6) _b-oa-d-0
B 1-y " b+B-d-0

_(b+B+z)(b-a) n A -z
M) = o p—a—o)a (1 B’l’b+[3+1’b+[3j

and F is a hypergeometric function (2.4.8)
Using the equation (2.4.8), we can obtain the characteristics of the model.

The expected number of Normal cells in the tumor at time t is

m,, (t)=N,e® (2.4.9)
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The expected number of mutant cells in the tumor at time ‘t’ is
my, () =" (N, +M, )e" —N,e™ | (2.4.10)

The variability of the normal cells in the tumor at time t is

—(o+d+6- —(o+d+6-b)t b-o+d+6
mz,o(t):Ale (o+d+0 b)t(l_e (o+d+0-b) ); A, :(ijo (2.4.11)

The variability of the mutant cells in the tumor at time ‘t” is

m,, (t) = (E 4 H) o (ason (e(b—a)t _ leBd-on )
obp-2a0) [F ( olb-2eB) _ 1) +G (e(bfo()t B 1)}

polbpod-ox [I (1 _ o (@ox )j| _Je(@on |:e([3—a)\ _ ol @ 0+(om)e J

Where

B 2(a+[3)A1D ) _ A

~(b-a)+(d+0)—(b+p)’ (b—a)—(a+B)
GoAB _ (a+B)N,

b-a’ (d+06)—(b+B)+(b—a)
I:(b+ﬁ+d+ej(N0+M0); [ b*B+d+6 N,
d+6 —B-a+d+6

_o-b+d+0 Do_ O+B

" b+p-d-6 d+6-b—-p
and A is as given in the equation (2.4.11) (2.4.12)

The covariance between the number of normal cells and mutant cell is
m,, (t) =A, [De(b—a—d—e)l 4 Abord-o Ble(fa+B+2(h—d—9))t:|

where Aj, B; and D are as given in the equation (2.4.12). (2.4.13)
Using equations (2.4.9) to (2.4.13) the values of my,(t), my(t), my (t),m,(t)

and my,(t) are computed for given in values of the parameters and time t and are

presented in table (2.3).
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From equations (2.4.9), (2.4.10) and table (2.3) we observe that the average
number of mutant cells and normal cells at a given time ‘t’ are decreasing functions of 0
when other parameters remain fixed. The average number of mutant cells is an increasing
function of My at a given time when other parameters are fixed. Hence it is observed that,
with the appropriate drug administration, the average number of mutant cells can reduced
by increasing the rate of death of mutant cells.

From the equations (2.4.11); (2.4.12) and table (2.3) we observe that the variance
of number of mutant cells is an increasing function of the parameters 6, when other

parameters remain fixed. The variance of the number of normal and mutant cells are

decreasing functions of time ‘t’ when (oc+b+[3)<d+6l The variance of number of

mutant cells is an increasing function of M, and both the variance are also increasing
functions of Ny.

From the equations (2.4.13) and table (2.3), we observe that the covariance
between the number of mutant cells and normal cells is a decreasing function of 6 when
other parameters are fixed. It is also observed that the covariance is a decreasing function
of ‘t” when other parameters are fixed. The covariance between the number of normal and
mutant cells is independent of My and it is an increasing function of Ny, This model also
includes the model given in section 2.3 when 6—0. Following heuristic arguments of
Goldie and Coldman (1979, 1983), here also we assume that normal cells corresponding to
drug sensitive cells and mutant cell to resistant cells to study the drug resistance in
chemotherapy. When a tumor is treated with chemotherapy, the best that can be achieved
is complete eradication of sensitive cells. The probability of cure is then equivalent to
probability of eventual extinction of the remaining resistant cells under the stochastic
process (Birkhead (1986)).

Suppose at time ‘t’ during cancer development, a tumor has ‘n’ cells which are

sensitive to drug of choice them the probability of cure is given by

C(n)=3P,, (t)[wj (2.4.14)

0 b+p

iy " P,w(t) d+0)" . .
Where, the conditional probability P, (t)= p.(1) ; and b—B is the probability of
; +

eventual extinction of ‘m’ resistant cell is a linear birth-death process. P, (t)is the

probability that there being ‘n’ sensitive cells at time t. Therefore
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Coefficient of x" in P(x,w,tj

C(n,t)= 0] b+p (2.4.15)
s [
o+p (ap-(oen)-[x-2 20 o-wjag | 0
Where
5 (t):exp{[(d*e)("*“)‘(‘("b*fggd*e)‘(b*“)z]t} e

If, for simplicity, we assume that the tumor has developed from a single sensitive cell
(NO:I, M, :O) then the recursive differentiation of (2.4.16) gives. Coefficient of

r n—1

eofien [ oy
ven)-{ 53 Jo-arat || (2518 Ja)

(2.4.17)

X" inP[x,w,t] =G(t)
b+p (

From (2.4.8), the marginal probability mass function of n is obtained as

n—1

Pn(t)—[ (re“,(d+e)r) ]{( (bfcx)(lfe") ] 2418)

((d+6)~(b—a)e") || (d+6)=(b-a)e"
Where t=b—a—d—0, since the sensitive cell population itself proliferates under a linear

birth-death process with parameters b-o. and d+6. Substituting the equations (2.4.17) and
(2.4.18) in the equation (2.4.15), we have

2 n-1

(b+B)- (S+gj(b a) o(1)
e LT (£ o-a(y (m[ggth)
{ (re" ~(d+0)) M (b—a)(l—e*‘))r}

(d+0)—(b-a)e*)’ || (d+0)=(b-a)e"

G(1)

(2.4.19)
From the equation (2.4.19) and for given values of the parameters b, d, 6, B, n and time ‘t’
the values of ¢ (n,t) are computed and presented in table (2.4). From the table it is

observed that the probability of survival of cell is influenced by the parameters Oand 3.
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For a range of different mutation rates 6 and B the value of C (n, t) is a decreasing function
of ‘t” and n. These results coincide with that of Goldie and Coldman (1983).

TABLE 2.4: VALUES OF C (n, t)
o B d 0 b
0.0194 | 0.0214 | 0.1294 | 0.0134 | 0.1562

c(n,t)
0.04
0.038
0.037
0.035
0.034
0.099
0.079
0.062
0.05
0.04
0.233
0.041
0.006
8.341x10™
1.163x107
0.127
0.012
0.001
1.55x10™
1.989x107
0.268
0.048
0.007
9.851x10™
1.372x107
0.268
0.048
0.007
9.851x10”
1.372x107
0.066
0.001
5.865x10°
4.787x10°
4.174x107
0.08
0.002
3.754x10°
7.963x10°
1.689x10°
0.129
0.003
6.872x10°
1.483x10°
3.2x10°

0.0194 | 0.0214 | 0.1294 | 0.9741 | 0.9842

0.0194 | 0.9535 | 0.9932 | 0.0134 | 0.1562

0.9648 | 0.0214 | 0.1294 | 0.134 | 0.9842

0.9648 | 0.214 | 0.9932 | 0.0134 | 0.9842

0.9648 | 0.214 | 0.9932 | 0.0134 | 0.9842

0.9648 | 0.9535 | 0.1294 | 0.0134 | 0.1562

0.9648 | 0.9535 | 0.1294 | 0.9741 | 0.9842

0.9648 | 0.9535 | 0.9932 | 0.9741 | 0.9842

O QN|W (=[O N W =[O QJ[N|W =IO QN|W (=[O IN[W =[O QA[N|W[—= O |Q[N|W[—|O QN W|— (O [|QA[N|W|— =
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CHAPTER 3
Two Stage Stochastic Model for Cancer Cell Growth

3.1 INTRODUCTION

In this chapter a two stage stochastic model is developed for cancer cell growth
with an assumption that in any malignant tumor, there will be premalignant and malignant
clones. In the beginning a normal clone become premalignant and later on it becomes
malignant if it takes further proliferation. A premalignant cell either may extinct without
becoming a malignant cell or it may take the mutation and become a malignant cell.
Denote that the cell in the stage of premalignancy as in state ‘A’ and the premalignant cell
which will become a malignant stage as in state B. after some period of time both the
premalignant cells in state A and malignant cells in the state B will die and enter into to
state ‘C’.

For an effective administration of chemotherapy it is needed to estimate the
number of cells in state A as well as in state B. for this sort of phenomenon a two stage
model for cancer cell growth is useful. Here we assume that the growth process, the
mutation process and the loss process in both states are random. Assuming poisson
process for growth, mutation and loss process, the joint probability distribution of the
number of cells in state A and state B at a given time, ‘t’ is derived. The expected number
of cells in both the states and their variability are analyzed. The cancer cell growth is also
analysed by deriving the probability of cell survival time in the tumor. The expected
survival time of the cell in the tumor and its variability are also derived. This model is
very useful for effective administration of chemotherapy. The schematic diagram

representing the two stage cell growth is shown in Figure-1.

A Primalignant B - Malignant
State (A) - State (B)
d1 d2
Death
Stage (C)

Fig.1 : Two Stage cell growth
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3.2

JOINT DISTRIBUTION OF NUMBER OF CELLS IN BOTH STATES

In this section, the tumor size distribution is developed by deriving the joint

probability distribution of number of cells in state A and state B. Let the growth process

of the malignant cells in the tumor is poison with parameters A in the state A. Let the

transition of a malignant cells from state A to state B and from state ‘A’ to state C are also

poison with parameters 3 and d; respectively. Further assume that the transition from state

B to state C is also poison with parameter d,. With this structure the postulates of the

model are,

1)

2)

3)

4)

5)

6)

The probability that a cell moves from state A to state B, when there are ‘n’ cells
in state ‘A’ during a small interval of time ‘h’ is nBh+o(h).

The probability that a cell moves from state A to state C, when there are ‘n’ cells
in state A during a small interval of time ‘h’ is nd,h+o(h).

The probability that a cell moves from state B to state C, when there are ‘m’ cells
in the state B during a small interval of time ‘h’ is md,h+o(h).

The probability that there is a growth of premalignant cell in state A during the
small interval of time h is Ah+o(h)

The probability that the occurrence of other than the above events during a small
interval of time ‘h’ is o(h) and

The occurrence of events in non-overlapping intervals of time are stochastically

independent.

Let Py, m (t) be the probability that there are ‘n’ cells in state A and ‘m’ cells in

state B during time ‘t’ then the difference equations of the mode are

P . (t+h)=P, (t)[1-(md,+nd, +nB+A)h+o(h)]
+P o (t [Xh+o ]+ i ( [n+1)d1h+o(h)]
+Pn’m71(t)[(rn+1d+o ]+ mat ( [n+1)[3h+o(h)]
Z e, m+l )formn>1 3.2.1)
P, (t+h)=P,,(t)[1-Ah+0(h)]+P, (t)[dh+o(h)]+P,,(t)[d,h+o(h)]
(322
P, (t+h)=P,(t)[1-Ah—d,h—Bh+o(h)]+P,,(t)[ 2d,h+o(h)]
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+P,, (t)[dy;h+0(h) [+P,, (t)[ *h+o(h)] (3.2.3)

P, (t+h)=P, [1-*h—d,h+o(h)]+P,, (t)[d,h+o(h)]
+P,, (t)[Bh+o(h)]+P,,(t)[ d,h+o(h)] (3.2.4)

The difference differential equations of the model are
%pm(t) ——(md, +nd, +np+A)P, . ()4 AP, ()+(n+1)BP. .. (1)

(n+l)d1 n+1m(t)+(m+1)d e 1("). forn,m=>1 (3.2.5)
d
5P°'° (t) ==APy, (1) +d,P, (t)+d,P,, (1) (3.2.6)
d
5P1-0 (t)==(r+d, +B) P, (t)+2d,P,, (t)+d,P, (£)+Apy, (t) (3.2.7)
d
apa1 (t)==(rA+d,)py, (t)+dp,, (t)+Bp,o (t)+d,p,, (t) (3.2.8)

Let P (x, y;t) denotes the joint probability generating function of p, (t) , then

P(x,y;t)=>.>"x"y"p,. (1);

n=0 m=0

X| (3.2.9)

Multiplying the equation (3.2.5) to (3.2.8) with x" and y™ and summing over all

3

n’ and ‘m’ and adding we get

d |—] m.
T P(x,yit :—X[ZZX“y“pnm -y > xx"y pnfl,m(t)}

n m n m

+d, |:Z Z(n + l)x“ Y Poctm (t) - ZZ nxx"’ly"‘pmm (t):|

n m n m

B Ty (- ZZ ) (1)

n m n m

—d, {;;mx“yy""‘p",m (t)—;;(nﬁ 1)X"Y™P, s (t)} (3.2.10)

After simplification, we get

d
aP(x,y;t) [-(d,+B)x—By+d, ]@er )?;—Xp(l—x)
Which can be rearranged as
——[—(dl+B)X—By+dl]%—d2(1+y)%=ph(x—l) (3.2.11)
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We can solve the equation (3.2.11) using the Lagrange’s method, we have

dt —dx _dy _ dp
1 —(d, +B)x—Py+d, d,(1-y) A(x-1)p
) (ii) (iii) (iv) (3.2.12)

Solving the system of equations (i), (ii), (iii) and (iv) in (3.2.12) we get the

arbitrary constants a, b, ¢ as below

a=e ' (y-1) (3.2.13)
b{(l—X)—dJrE_d(1—y)}(1—y)[df) (3.2.14)
and
A
c:exp{dl +B(lx)+dlliﬁ(ly)} (32.15)

Using the arbitrary constants given in equations (3.2.13), (3.2.14) and (3.3.15), the

general solutions of (3.2.11) can be obtained as

Y
P(x,y,t)—exp{d +B(1_X)+d [iﬁ(l_y)}

4+p

q{edz'(l_y){(l_x)_B(l_y)}(l_y)( i ]} (32.16)

d, +p—-d,

Where ® is an arbitrary function of two variables. Therefore substituting the initial
condition Py (0) =1, we get
i _dZ (17){)(1*67((1”[5)‘)
d, (d,+p

~dB(1-y)(e —e ")

P(x,y;t)=cxp
B g
{dl+s(1_y)(l_e )} (d,+B)(d, +B+d,)

|:1 — (1 - X)e’(dﬁﬁ)f —L(l _ y)(e—dzt _ (@ ):| ’

d, +B—d,

M,
(3.2.17)

[1 -(1-y) e’dz‘]

The average number of cells in state A at time ‘t’ is E[N(t)] = %P(x, y;t)

x=1
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This implies E[ N(t)]= dLB(l —g(apx ) + N e (3.2.18)
1 +

The average number of cells in state B at time ‘t’ is

E[M(t)]:%P(x,y;t)

y=1

_ At —dyt _ ~(dy+p)t
This impliesE[M(t)]_l:deB{l de _ed ; - H_{d N[;)Bd ]
it 2 L th—a,  +ph—qa,

(e—dzt _ g (dB)e ) + Moe_dlt (3.2.19)

The second order raw factorial moment for both stages A and B are obtained as

E[N(t)2 7N(t):| :{ A (lief(dﬁﬁ)‘ )T +N, (No 71)efl(d,+[3)t

d +p

( % j (1= @) (o) (3.2.20)

2 | A [1-e* gt _ g (B ’
B[M( _M(t)Hde[ G, d+p-d, H

+N, (No - 1)|:ﬁ(edz' _e (B ):|2

d,+p—d,

A’B 1— e—dz‘ e—dz« _ e*(dﬁﬁ)t
d1+ﬁ dz - d1+l3_d2

e*dz‘ _ ef(d,+[s)t
+2N,M, e {(d+[3—d) (3.2.21)
1 2

The Product raw moment of first order is

E[M(t)N(t):l _ >\,B 1—e ™%t B et _ e’(d.+ﬁ)t A (1 B e—(dl+ﬁ)l ) N ef(dﬁp)[
d1+ﬁ dz d1+[37d2 d1+B !

_’_(e*dzl _ e*(dx‘rﬁ)l) BN, |:(N0 _ 1) e-(d1 By L(l _ e_(dl +B)t ):|

d1+B_d2 d|+B
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A My e (1 —e 4P ) +N M, e 4k (3.2.22)
d,+p

The variance of the number of cells in state A is
VIN()]=E[N(t) =N(0) [+ E[N(1)]-[E[N(O)]] (3.2.23)

Substituting the equations (3.2.18) and (3.2.20) in equation (3.2.23) we have,

2
VINOJ=| - )| w22 (et

d +p

+ A (1 _ e’(dﬁﬁ)‘ ) + Noe*(dﬁﬁ)‘ 1- A (1 _ e’(dl‘rﬁ)‘ ) + Noe’(dﬁﬁ)‘
d +B d,+p

(3.2.24)

Similarly from equations (3.2.19) and (3.2.21), the variance of the number of malignant

cells in state B is obtained as

[ 2 J1men ew—e@m T
V[M(1)]= Llﬂs{ d,  d+B-d, H

+N, (N, —1){[3 (e’dz' g (4P )T

d,+B—d,

efdzt _ ef(dl»f[))t
+M, (M, —1)e”* +2N M, Be " 7( apod )

BN, (e —g @) Lt g (a7
2 0 ( ) N Moe’dlt AR |l1-e e e
d1+B_dz d1+ﬁ dz d1+B_d2

_edt —dot _ ~(di+B)t BN Cidz‘ - ei(dﬁﬁ)‘
+ AB J1-e™ e e . 0 ( ) M
d1+B dz d1+B_dz dl+B_d2

_ Aot ~dyt _ ~(d )t BN e’dzl_e’(dw‘fﬁ)‘
{1{ B {1 et et e H+ ol ) oapeo

dl_B dz d1+B_d2 d1+B_dz
(3.2.25)
The covariance between the number of cells in state A and in State B is
Cov[ M(t),N(t) |=E[M(t)N(t) |-E(M)(t).E(N(T)) (3.2.26)
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By substituting the equations (3.2.18), (3.2.19) and (3.2.22) in the equation (3.2.26) we

have
Cov I:M (t) N (t)] — AB ) 1- et ~ e it _ o (dip) A (1 _ oy ) SN B
> d +pB d, d, +B-d, d +p 0

“ax _ o (@epe) BN e @B A (s
ety BN {(NO e e fie )}

+

AM, o (1 @) o N M e Pn
Ldi+B

}"B 1— efdzt efdzt _ ef(d,ﬂ})&
4 +B| d,  d+B-d,

_BNo (efdzt el +m«)
- Iy I\/Ioe’dll

+

d, +p—d,

» (1 —g P ) +Nye 4P (3.2.27)
d,+p

For various values of t, A, d,, B and d, the values of E[M(t)], E[N(t)], V[M(t)],

V[N(t)] and COV[M(t), N(t)] are computed and are given in the table (3.1).
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From equations (3.2.18), (3.2.19) and the table (3.1) we observe that the average

number of mutant cells and normal cells at any given time ‘t’ are increasing functions of

‘A’ when other parameters are fixed. It is also observed that E(N(t)) and E(M(t)) are

decreasing functions of d; when other parameters remain fixed. It is further observed that

the mean number of mutant cells at any given time ‘t’ is an increasing function of 3 and
E(N(t)) is a decreasing function of B, when other parameters remain fixed. E(M(t)) is
a decreasing function of d, and E[N(t)] is not influenced by d,. So by suitable
administration of anticancer drug into the body one can increase the ‘d,” and hence can
reduce the tumor size. The E[N(t)] is an increasing function of N, for given values of

the other parameters. The average number of normal cells is an increasing function of ‘t’
when (A+pB)>(d,+d,) and it is a decreasing function of t when (A+B)<(d, +d,) for

given values of other parameters. The average number of mutant cells is a decreasing
function of ‘t” when other parameters are fixed.
From equations (3.2.24), (3.2.25) and the table (3.1) we observe that the variances

of number of normal and mutant cells for given value of time ‘t” are increasing functions

of ‘A’ when other parameters remain fixed. The values of V[N(t)],V[M(t)] are

decreasing functions of ‘d;” for fixed values of other parameters. It is also observed that
the variance of N(t) is a decreasing function of B and V[M(t)] is an increasing function

of d, when other parameters remain fixed. It is observed that variability of number of

normal cells at a given time is an increasing function of Ny for fixed values of the
parameters and it is also noticed that V[M(t)] is an increasing function of My, when
other parameters are fixed. V[N(t)] andV[M(t)] are decreasing functions of ‘t’ as
(A+B)<(d,+d,). When other parameters are fixed V[N(t)] is an increasing function

of ‘t” and V[M(t)] is decreasing function of ‘t’. The covariance between the number of

normal and mutant cells is negative for given values of the parameters.

The average total number of pre malignant and malignant cells in the tumor in both
states A and B is E[ L(t) |=E[M(t) |[+E[N(t)] (3.2.28)

Substituting the values from equations (3.2.18) and (3.2.19) in the equation (3.2.28),
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—e Tt —dyt _ ~{di+B)t
E[L(t)]: L(]_e*(dwﬁ)t)_kNoe—(d,+;;)‘ + A |1-e e e
d|+B d]+[3 d2 dl+B_d2

BN efdz& _ef(d,ﬂ's)x
M +Me ! (3.2.29)
d, +B-d,

The variability of total number of cells in both the states is obtained from
V[L(t)]=V[M(t) ]+ V[ N(t) ]+2Cov[ M(t),N(t) ] (3.2.30)

By substituting the values from equations (3.2.24), (3.2.25) and (3.2.27) in the
equation (3.2.30) we have

VL(1)]= [(@(l_ew )T N (N, —1)e 0P {deoj(l o) o)

1+

N A (1 o (B ) +Nge @O |- A (1 oy ) £ N,
d+p d+p

_ _ (4, + 2 2
. A [1—e e dat _ g4 N (N _1) B (efdz‘ _ef(d,ﬂa):)
d1+B dz d1+l3_dz o d1+B_d2

BN() (e—dz« _ e—(d‘ +B)t)

+M, (M, —1)e™* +2 +Me
’ ( ’ ) dl + B - dz ’
ot —dyt (4 +p)t e it _ o (ditB)
dkB 1-e™ e e 12N, M, Be ( )
1+B dz d|+57d2 dl+ﬁ_d2

et ot gy BN, (e —e 0P
+H AB {1 e” e e H+ 0( )+Moe’d3‘

d, +B d, d, +p-d, d,+p-d,

_ ot —dyt _ A(d+B)t BN Cidzl —ei(dﬁﬁ)l
{1{ AB {1 € € e H+ o( )+M0e’d2‘

d+p| d,  d+B-d, d, +p—d,

2 A Jl-e™ o™ —e b A (1 7ef(d1’[3)t)+ N,e 9"
d1+B dz dI+B_d2 d1+B

—dyt _ ~(dy+p)t
BNO (C € ) A (l—ei(d‘w)')‘*(N _l)ef(drﬁ)t
d] + B - dz dl + B ‘

+ %e’dzl (1 _ e’(dwﬁ)t ) + NOMoef(d,Jr[Hdz)t
d,+p

_ At —dyt _ ~(dy+p)t
_2|I A (l_e*(wﬂ)t)_'_ Noe(dﬁﬁ)i [l_m{l c "¢ ¢ }
d1+B dlﬁ dz d1+13_d2
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BN, (e’dz‘ - ef(d“m‘)

+Me ™ 3231
d,+p-d, ! ( )

For various values of t, A, di, B, My, Ng, d» the values of E[L(t)] and V[L(t)]

are computed and given in Table (3.2).
TABLE 3.2: Values of E[L(t)], V[L(t)] for various values of the parameters

a | di | B | dy [My|No| T |E[L()]|V[L()]
0.9310.02]0.7810.24| 10 | 15| 5 | 12.629 | 35.565

0.35 8.985 | 33.92

0.47 6.701 | 32.45

0.54 5.636 | 31.653
1.4310.87]0.08]0.76| 10 [ 15| 5 | 22.434 | 176.47
0.23 22.59 | 130.15

0.39 22.691 | 112.01

0.54 22.759 | 107.62
14310.1210031046| 2 | 5 |5 | 7909 | 106.4
0.28 5.232 | 82.234

0.33 4.656 | 78.426

0.4 3.987 | 75.205
0.4910.02 00104620 | 5 |5 | 8845 | 77.285
0.68 9.762 | 112.82
0.95 11.036 | 167.64
1.43 13.32 | 299.22

0.6810.02/001|046]10| 5 |5 | 17.801 | 111.93
17.926 | 187.42
10 | 18.313 | 241.8
12 ] 18.763 | 299.22
09510.02]0.01]046]20 10| 5 | 15.551 | 124.93

40 17.536 | 126.72

60 19.521 | 128.51

80 21.507 | 130.29

0.9910.78 1 0.01 [ 0.86 |40 {20 | 5 | 2.195 | 42.186
7 | 1.449 | 103.85

9 | 1.306 | 402.96

10| 1.287 | 852.92

09910781001 08| 2 | 4 |5 | 1355 | 21.225
6 1.396 | 23.782

8 1.437 | 26.34

9 1.458 | 27.618

0991078100108 | 5 |4 |5 | 1395 | 21.265
6 1.409 | 21.278

7 1.422 | 21.292

8 1.436 | 21.305

From the equation (3.2.29) and Table (3.2), we observe that the average total

number of cells in the tumor at a given time ‘t’ is a decreasing function of d, when
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(A+B)>(d,;+d,). It is also observed that E[L(t)] is an increasing function of B as
(A+B)>(d,+d,)and M, <N,. The mean number of cells in the tumor at any given time
‘t’ is a decreasing function of d; as (A+pB)>(d,+d,). It is further observed that
E[L(t)] is an increasing function of ‘A’ as (A+p)>(d,+d,) when other parameters
remain fixed. E[L(t)] is an increasing function of ‘t” as (A+B)>(d, +d,).

From the equation (3.2.31) and Table (3.2) It is observed that the variability of
total number of cells in the tumor is an increasing function of A. It is further observed that
V[L(t)] is an increasing function of both My and Np.

Taking t — oo in the equation (3.2.17), we can obtain the equilibrium position of

the tumor model. The probability generating function of premalignant and malignant cells

in the tumor at any arbitrary time is

This implies that N(t) is asymptotically poison with Mean A/ (d] +PB) and M(1) is
also asymptotically poison with Mean AB/(d, +PB)d,, where N(t) and M(t) are the number

of cells in state A and state B respectively at any time ‘t’. The total tumor size is therefore

asymptotically poison with Mean k(d2 + [3)/(dl + B) d,.

33 TWO STAGE STOCHASTIC MODEL FOR CELL DURATION IN THE

TUMOR

In this model it is assumed that every malignant cell in the tumor is in state A in
the beginning. After a period of time in state A, the malignant cell will either dead (going
to state C) or divides in to two mutant cells (going to state B).

Let f(x) be the probability density function of a cell that the time spent in state A

>

until leaving to State ‘C’. Let g(x) be the probability density function of the time that a
cell will spent in state ‘A’ until leaving to state B and h(x) be the probability density
function of a cell that the time spent in state B until leaving to state ‘C’. Then the survival

function of the cell in the states A, B and C respectively are

F(0)=1- [ 1(x)dx 3.3.1)
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G(1)=1-[e(x)dx (3.32)

H(1)=1-[h(x)dx (3.33)

Therefore the force of transition from state A to state C, state A to state B and from state B

to state C respectively are

f(1)

D, (t):m (3.3.4)
¢’2(t):% (3.3.5)
q@):% (3.3.6)

The probability that a malignant cell generated initially at time t=0 is still in the tumor in

state A at time ‘t’ is

o

a(t):J.[F(x)g(x)+G(x)f(x):|dx 3.3.7)

t

The probability that a mutant malignant cell in a state ‘B’ at time t is

t

b(t)—I[L[[F(y)g(y)+f(y)G(y)]dy:|g(X)GPE)(:)_X)dx (3.3.8)
The probability that a malignant (either mutant or premutant) cell is in state ‘C’ at time ‘t’
isc(t)=1-a(t)-b(t) forall t=0 (3.3.9)
In order to analyse transition probabilities, it is assumed that the duration of time a
cell spent in state A before reaching to state B, the duration of time a cell in the state B
before reaching to state C and the duration of time a cell in the state ‘A’ before reaching to
state C are all exponential with parameters B3, d, and d; respectively.
f(x)=de*;g(x)=Be™;h(x)=de (3.3.10)
Therefore the expected duration of a pre malignant cell is in state A before
reaching state C is (1/d;) the expected duration of pre malignant cell in state A before
reaching the state B is (1/f3) and the expected duration of a mutant malignant cell in state B
before reaching state C is (1/d,).
Substituting (3.3.10) in the equations (3.3.7), (3.3.8) and in (3.3.9) we get
a(t)=e @ (3.3.11)
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b(t)= +E—d [t —e @] (3.3.12)

c(t)=1-| -G Jewm [ P o (3.3.13)
d,+p-d, d,+p-d,

Let s(t) be the probability that a premalignant cell generated at time t=0 is still in

the tumour at time t, then

S(t)_[dl+ﬁ—d2]e +[dl+ﬁ—d2]e (3.3.14)

Which can be rearranged as
s(t)= pe ) 4 (1- P)e’M(‘)

dl_dz
dl 7B7d2

function of the mixture of exponential distribution with parameters p,A,, A, .

Where A, =d, +B;A,=d, and p= therefore s(t) is the probability density

For different values of d;, B, d» and t the values of s(t) are computed and given in
table (3.3). From table (3.3) it is observed that s (t) is a decreasing function of t when other
parameters remain fixed.

Let ‘T’ be the total duration of a cell in the tumour before reaching state C. Then

its expected duration in the tumour is
E(T)=[1[da(t)+db(1)]at (3.3.15)
0

By substituting the equations (3.3.7) and (3.3.8) in the equation (3.3.15), we get
B+d,

Similarly

2 2d, 2d,8 1 1
E(T")= — - 3.3.17
() el (3317
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TABLE 3.3: The values of S (T) for different values of a, , y and t

d; B d; t S(t)
0.123 [ 0.017 [ 0.001 | 0 1
2 0.785
4 0.622
6 0.5
B 0.407
10| 0337
0.567 | 0.017 [ 0.456 | 0 1
2 0.323
4 0.105
6 0.035
8 0.012
10| 0.004
0.9850.683[0.174 | 0 1
2 0.421
4 0.387
6 0.373
3 0.36
10| 0348
0.123]0.985 [ 0.453 | 0 1
2 0.553
4 0.239
6 0.098
3 0.04
10| 0016
0.567 | 0.683 [ 0.001 | 0 1
2 0.582
4 0.547
6 0.543
8 0.541
10 0.54
0.985] 0.99 [0.974 ] 0 1
2 0.141
4 0.02
6 0.003
8 | 4.076x10™
10 | 5.805x10°

The variance of T is

v(T)=—2 24P [1— ! J—[ ‘“dZJ (3.3.18)

(d+p) (d+B-d,)| &5 (d,+p’)) (d,+B-d,

For different values of d;, B, d> the expected duration of time a cell is in the time tumor

and its variability are calculated and given in the table (3.4).
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TABLE 3.4: The values of E(T) and V(T) for different values of d;, § and d,

d; B d; E(M | V(D
0.0181 | 0.1934 | 0.213 | 9.0291 | 552.18
0.542 | 0.1934 | 0.213 1.74 47.877
0903 | 0.1934 | 0.213 | 2.594 | 78.329
1.264 | 0.1934 | 0.213 | 1.309 | 34.417
0.542 | 0.1934 | 0.827 | 1.678 | 13.387
0.542 0.574 | 0.827 | 1.518 4.477
0.542 0.384 | 0.827 | 1.581 7.362
0.542 1.145 | 0.827 | 1.413 1.228
0.903 0.955 | 0.009 | 57.649 | 0.001
0.903 0.955 | 0.418 1.16 5.015
0.903 0.955 | 0.827 | 1.768 1.523

0.0903 0.955 1.235 0.954 0.857
From the equation (3.3.16) and Table (3.4), it is observed that expected total

duration of a cell in the tumor before reaching state ‘C’ is a decreasing function of d; when
d, > (B + dz) . It is also observed that E(T) is a decreasing function of [3, when
B<(d,+d,). It is further observed that the expected total duration of the cell in the tumor
is a decreasing function of d,when (d] +[3) >d,.

From the equation (3.3.18) and table (3.4), it is observed that the variability of total

duration of the cell in the tumour before reaching state ‘C’ is a decreasing function of d;,

and d as d, >(B+d,);p<(d,+d,) and d; as (d, +B)>d, respectively.
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CHAPTER 4

Stochastic Model for Mutant Cell Growth under Chemotherapy
41  INTRODUCTION

Chemotherapy is a medical treatment for the control of cancer cell growth through
drugs. Malignant tumors (cancer) tends to grow rapidly and show differences in size and
shape. in the earlier chapters 2 and 3, the author has consider the mutant cell growth with
an assumption that the drugs are continued for a long period of time. However in some
chemotherapy treatments, the chemotherapy is prescribed on cyclic basis. When an
anticancer drug is induced to the body, both normal and cancer cells are killed. The white
blood cells fall to the lower level and care is needed to evaluate the status of the patient. If
the outcome is not favourable, life threatening hazards may develop so an interval of time
is to be specified during which the chemotherapy may be discontinued to recover. But due
to discontinuation of Chemotherapy, the tumour will also grow. At the end of this
recovery period, the chemotherapy is to be started again. Due to the stochastic nature of
the constituent process, the situation is to be well analyzed through stochastic modeling of
cancer cells during the chemotherapy and its absence.

It is assumed that the loss process of the malignant cells follows the poisson
process with different parameters, when the patient is under chemotherapy and when the
patient is in recovery state. Similarly the growth process of the cancer cells is also poison
with different parameters for two states of the patient. It is also assumed that the recovery
periods are independently and identically distributed exponential varieties. With these
considerations, in this chapter we develop a stochastic model for cancer cell growth, which

is much useful for determining the optimal drug dose regimes.

4.2 STOCHASTIC MODEL FOR CANCER CELL GROWTH UNDER
CHEMOTHERAPY
Let the growth of the cancer cells is poison with growth rates ‘o’ and nA during the
presence of chemotherapy and in the absence of chemotherapy respectively. The time for
which the patient is in recovery state is exponentially distributed with parameters n,_, i.e
the time in which the patient moves from the state of recovery to chemotherapy with mean

duration m_. The time in which the patient is under the chemotherapy treatment is a

random variable with probability density function f(x). If m,(x) is the conditional
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probability that the patient will move from chemotherapy state to recovery state given that

*j[nu (x)dx

the patient has been under treatment for a time ‘x” then f(x)=mn,(x)e

Also assume that the loss process of cancer cells is poisson with death rates nu"

and npu® when the patient is under recovery and under the chemotherapy states

respectively. Let the maximum size of tumour (number of cells in the tumor) be N. Let
P., . (t) be the proability that the patient is under recovery state and there are ‘n’ cancer
cells present in the tumor at time ‘t’ and P, , (t, x) be the probability that the patient is

under the treatment of chemotherapy and ‘n’ cancer cells are present in the tumor at time
‘t” and has been the recovery state for the period of time, (x, X+ dx) .

With the above assumptions, the difference equations of the model are
P, (t+h)=(1-2h=m,h)p,, (t)+u'hp,, (t fnu x)hp, o (t, x)dx (4.2.1)

P (t+h)=(1-nth—np'h-n, h)p,,(t)

+(n+1)uwhp,,, (t)+(n=1)xhp, ()

+In“ )hp, . (t,x)dx+o(h),0<n<N-1 (4.2.2)
p.x (t+h)=(1=Nph-n,h)p, . (t)+(N-1)xhp, (1)

+jn” )hp,  (t.x)dx +o(h) (4.2.3)

Peo(t+h,x+h)dx =(1-n, (x)h)p,, (t.x)dx +php,, (t.x)dx +0(h) (4.2.4)
Pen (t+h,x+h)dx = (l—nu'h—r]Cr (x)h)pc’“ (t,x)dx

+(n+1)php, ., (t,x)dx+o(h)1<n<N-1 (4.2.5)

I
Z

P (t+h,x+h)dx =1(1-Nuh—n,, (x)h)p, x (t.x)dx+o(h), n (4.2.6)
With the boundary conditions,
P (0) 1 forn =0

= 0 otherwise

Pen(0,x)=0forall n>0; p,,(t,0)=n,p,,(t), for n<N

The difference differential equations of the model are
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Pro () ==(A+m )P0 (1) +1p, (¢ Inu )Peo (tx)d (4.2.7)

p., (1) =—(nh+np +n_)p,, (t)+(n+1)u'p,,, (1)

+(n=1)ap, ., (t +Inu )P.., (t:x)dx, for 1<n<N-1 (4.2.8)
d
S () == (N )R (0 + (N=1)2p, +jnc. oy (LX) (429)
0 0 c
5 Peo (63)+ 2 Peo (6X) 41 (x)Peg (1) —ppe, (1.%) =0 (4.2.10)
ip (t X)+ap (t,x)+(np_°+n (x))p (t,x)
ox Per ot Per or en

—0—(n+1)p,t“pLn+1 (t,x)=0, forl<n<N-1 (4.2.11)
0 0 .
&pC’N (t,x)+apc_’N (t,x)+(Np +1”|Cr(x))pgN (t,x)=0 (4.2.12)

For solving these difference differential equations, we use Laplace transformation.
Multiplying the equation (4.2.7) with ¢™ on both sides and integrating, we have

d

T e™p, o (t)dt = —(k+nm)‘|’e’“ph0 (t)dt+ur‘|‘e’“pr’l (t)dt

(M (X) P (t,x)e™ )dx (4.2.13)

S8

Denoting Pro(s)= J.e’“pr,0 (t)dt and substituting in the equation (4.2.13) and after

some simplifications we have

B0 (5) = (s+24m) P (5)+1Per (5)+ [ (M (x)Pes (5.x) e (4.2.14)

dt

S8

Using the boundry conditions and on simplification, we get
(s+2+M )P () =1+ 1P, (5)+ [ (M (x) Py (5.%)) dx (4.2.15)
0

Considering the equations (4.2.8) to (4.2.12) and taking the Laplace transformation

and using the boundary conditions, we have

(s +nA+1, +np’ )ﬁm (s)=(n+1)uP, . (s)+(n=1)Ap,,, (s)
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(Mer (X) P (5:%))dx, 1Sn <N -1

S =38

(s+nm+Nur)E’N(s)=( P ( +T nLr )dx
0

(1, ()P (5.5) =W, (s,x>—§@,o<s,x)

(s+nu°+ncr(x))13 (s,x)=(n+1)p° LHH(S,X)—%P“](S,X)

I<n<N-I

. _ 0 _
(54 N1 (3)) B (5%) =B (5:%)
Solving the linear differential equation (4.2.20), we get

§+Np Iq (x)d

Pex (S,X) =Pex (S’O)

Taking n =N — 1 in the equation (4.2.19), we have

%EN_I(S,X) (s+(N=1)u +1, ()P (5:X)~ NuP, o (5,%) =0

using (4.2.21) and solving the equation (4.2.20) we get

N
~(8.0)+P.(s,0)e o

xar

c

P

c,N-1

(s,x)=NpA,,

ol

1-e

Where A, =
Taking n =N — 2 in the equation (4.2.19) and solving we get
P, (5.%) = [ N(N=1)u A, B (5,0)+ (N=1)uP. ., (s,0) A,

~ _(s_(N-z)N)x—xnu(X)dX
+Poxea (S’O):Ie {

c X 2
e
Where A, =~—-—5%
()
and for ISi<N-1

((N-k) (ot
j o _ (5N [ g ()
P\, (s,x)= ; P (u“) APy (s0)] e 0

| (i-k)
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(4.2.18)

(4.2.19)

(4.2.20)

(4.2.21)

(4.2.22)

(4.2.23)

(4.2.24)



(-1)* [e’(”)‘ —1T

where A, =1and A, = - (4.2.25)
ki)
taking i=N — 1 we have
_ N-1 (N_k) Nelk — _ —(s—pc)x{‘[nu(x)dx
P (s,x)=|> P (1) Ak Py (s.0)| e C (4.2.26)
C(N=-k-1)

Substituting the value of P, (s,x) from the equation (4.2.26) in the equation

(4.2.18), we have

_ NI (ka) Nk — B 7sxj‘nu(x)dx
P, (s.x)=|>] P (1) APy (5.0)+P (s.x) |[e °
“L(N-k-1)
(4.2.27)
By taking (N — i) = n in equation (4.2.25) we have
(N-K) o
_ N-n Nen—k — _ —(s+ny )x—jnc,(x)dx
P, (s:x)= Z P (“C) AyPoni(s:0) |l e ’
k=0 (N—k—n)
forl<n<N-1
where A, is as given in the eqution (4.2.25) (4.2.28)

substituting the value of p,, (s,x) from the equation (4.2.27) in the equation

(4.2.18) and using the boundary conditions, we get p, , (s)

Therefore
(S+7~+nm —Tlrj(s))ﬁ,o (S) = 1+Hcﬁc,l (S)
(N-k)
N-1 N—k _
+ > P (1) P () L(Ag L (x)F(x))
U (N-k-1)
_ 3 *I(Hnu(X))dx
Where f(s)= Inm (x)e” dx (4.2.29)
0

Where L is the Laplace transform operator. Substituting the value of P, (s,x)

from the equation (4.2.28) in the equation (4.2.16) and using the boundary conditions, we
get
67



(s+nx+nu' +11m)§r_n (8)=(n+1)p°p, ., (s)+(n—-1)Ap, ., (s)+irfncr (x)

(N-k)
p (HC)Ninik Fc,ka (S’O)Kanfk
0 (N-n-k)

z

-n

~
I

—(s+u°)x—j‘r|“(x)dx
e g (4.2.30)

On simplification we have
(s +nA+np’ + nm)f’m (s)=(n+1)p'p, ., (s)+(n=1)2p, ., (s)

(N-k)

. Nek B . (_1)N—n—k
P e

o

freoet o]

0

—j‘ncr(x)dx
Where f(x)zncr(x)e 0 (4.2.31)

This implies

(s+n7» +np’ +T]rc)Pr,n (s)=(n+1)u'p, ., (s)+(n—-1)Ap, . (s)

N-n (Nik)
+ Z(_I)Ninik p nrcE,ka (S)
(N-n-k)
Nk N-r—-k
¢ (_l)i F(SN—H) (4.2.32)
i=0 1

Substituting the value of E’N (s) in (4.2.17) and using the boundry conditions, we have

(S+Np' +nm)EN (s)=(N=1)AP, ., (s)+F (sy)NP,x (5) (4.2.33)
This implies
[s+Nu +n, —n.F(s3) | =(N=1)2AP, x (s) (4.2.34)

The equation (4.2.34) can also be written as

Prnat (S) = (AI _l)ﬁr,N (S)
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1

Where A, =(Nil

Sy =S+N(u°)

Takingn=N -1, N -2, ... in equation (4.2.32)

f)r,N72 (S) = I:Az (Al _l)_BZ:Iﬁr,N (S)
This implies

Pr,N—Z (S) = KZf)r,N (S) and

P s (8)=Kp,x (5)

Where K, =A;[ A, (A, —-1)-B, |-B, (A, -1)-D,

In general

P (s)=K.P. y(s)for2<k <N

Where K, =[A K, -BK,_,-D, ]

1 . =
A, zi_k)k[H(N—kH)u +(N=k+1)h+n, —n.F(sy4i)] ;2<k<N

(N

1
B =
“(N-k)A

1 &

3
D, = —1)U
F = N 0( )

P« (s) as

r,

(N=J)

(k=(j+1))

The equation (4.2.37) gives the values of P\ (s) interms of P_(s).

T]I'C

[P (s)]fl =[s+h+n,—nF(s) Ky (1)K

)xl:s_._N“r (N—1)7u+ﬂrc _nrc?(sN):I and

N (N—k)
Nee P (uC)Nik KkL(/KN,k(x)f(x))
FU(N-k-1)
i(_l)NH Fswi)
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[(N=k+2) =, (N=k+2)T (5, ,0) ~F (Sy00n)

(_1)i F(SN—J—i)

(4.2.35)

(4.2.36)

(4.2.37)

We can obtain



Ky as given in the equation (4.2.37) (4.2.38)

The laplace transformation of the probability that at time t there are (N-i)

malignant cells in the tumor when the patient is under chemotherapy is obtained as

(N-K)

o PP (Y

ol
4
0
—_
v
N
Il
i{\g
1 -
<
—
=
|
~
Na
r
0
*
-
S
~
—
|
Naw)
1
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|
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*
L
-
| I

—j‘nm(u)du
Where, 1—F(x)=e 0 (4.2.39)
On simplification, we have
[(N
P i _
— 1 i i+ 17f Sy
Peni(8)=| =57M. 2| € [(-1) 1{(’“)}
i! = Snoi
) N-1
P .
i—1 a7 1T (53.44)
+(1=8,, )0 K, Y| € |(-1) | )
L (i-1)! =l Snoa
[(N=1))] |
P -
i— _
i i-k ik ek | 1= (S ) ||
2SR B 5 INCH i B | N
= (i-k) =l Snt
0<i<N-1
and§; =0 ifi=j, 5; =1 if i= jand Ky is as given in the equation (4.2.37) (4.2.40)
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(N-K)
P
- M (N=k-1))| _ B | I (saa) - 1-f(s)
P = -~ n.P -1 _— P
c0 (S) s (N—k)! Mee LNk (S) £ ( ) S +M.P o (s) S
(4.2.41)
Using the boundary conditions, we have
(N-k) _ _
= = =k i | 1= (Syoy 1-f(s) || =
PC,O (S) = P nrc Kk Z(il)N ' |:(Nk):| +anN {():|}PTVN (S)
=0 (N—k—l) i=0 SN-k-i S
(4.2.42)

4.3 LIMITING BEHAVIOUR OF THE MODEL

Assuming that the tumor is in the equilibrium state we have lims F(s) = limF(t) ,
50

t—0
limP, , (t)=p, ,andlimP, , (t)=p,,

The equilibrium probabilities of the tumor size when the patient is under chemotherapy is

obtained as

N
P .
1
i i 1-f
1 i+l (N-1)ue
P ={~2 C [(—1)"] e
c,N-i 1' nr&:1:0 1 ( ) {(N—l)uc:|
N-1
P .
i—1

i—1 il i1l I_F(N—l—l)pC
B ooy © |61 {(N—ll)u

=0
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N-k
p .
i—-k =
i{i-k i I f(kafl);l
+ K| ¢ |- _[tp,
& o kg ) (=) {(N—k—l [
) x _ fjna(x)dx
where, limfy ; (S):lncr(X)AN,je 0 dx 4.3.1)
_ Nk -
P p—
GA\N-k-1 & i | 1 f(N*k*i)pc
P,= —F— M K -1 —_— K P 432
c,0 ot (N—k)' nrc ki:n( ) |\(N—k—1)uc +rlm Nmf r,N ( )

. —1(s . . . . .
Where m, =hm{ ( } is the mean duration for which the patient is under
s—0 S

chemotherapy.

Similarly the equilibrium probabilities of the tumor size when the patient is under recovery

T

state are P =(A-1)P

andP  , =K, P where A; and Ky is as given in equations (4.2.35) and (4.2.37)

T .

respectively.
N N-1

Using the boundary condition, P, +P, _, + Z P it z P tP =1 (4.3.3)
k=2 k=1

We have

1 N 1 ! i+l I_F(N—l)}f
|:pr,N:| :1+2Kk +Z_7!T]mz C (—1) _

(N=1)w?
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i-1 o il i+l-1 I_F(Nflfl)pc
+(1_8"°)(i—1)1n“K‘1 ?(-1) e

N-1-1)p’

771()% {(N—k+l)p_r +(N—k+1)7»+nrc “MNee —Tlrf(N,kH)uc}

B, = (N=K)% {(N—k+2)w ~N (N=k+2)p, (f(N,M),f e )}

1 K (N_l) (k=1-1) k—1-1

-3
-1 k=(1+1) P C NP
(N_k)7L 1:0( ) L Z ( ) (N=1-i)u

(k—(1+1)) I

D, =

(4.3.4)

44  MODEL BEHAVIOUR WHEN THE CYCLE LENGTH IS EXPONENTIAL
Since the distribution of the tumor size depends on the random time X, during which the
patient is under chemotherapy, let us assume that it follows an exponential distribution

with parameter 1, . Then the transition probability from presence of chemotherapy to the

recovery state ncr(x) becomes n,,

f(s,)= {nae’(”'*““)dx = nniJrsl (4.4.1)
We have

P i(s)=(A ~1)P.x (5) (4.4.2)
P (8)=KiP,.(s), 2<k<N (4.43)
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and

[Pr,NIl {s +A+1, —nm?(s)} K, —wK,,

“ (N-k)
2l P () T KL(AL (x)E(x)) (4.4.4)
L(N=k-1)

Where Ky and A, , are as given in the equations (4.2.37) and (4.2.38). When the patient
is under chemotherapy, we have

L Y S (4.4.5)
Sl ncr +sl

This implies

e 2

LABIRE S YN {1}

i! =0 MNer +Sx01

Where s, =s+n(u') (4.4.6)
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S
Where
1 v n
= |s+Np' +(N=D)r+mn, -7, | —=—
1 (N—l))[“ W (N=1)r+n, n“{mﬁswﬂ
1 N,
A, =——|s+(N-k+1)p"+(N-k+1 k+nm—nm(“ﬂ
¢ (N—k)?[ ( e+ ) MNer +Sx-i
2<k<N
1 T
Bk:(Nik)}L[(N—kJrZ)u +1, (N-k+2)
{ Mo Mg H
Ner TSz Mer T8nkaa
b 1 “2’3:( l)k—(j+1) (N=)) (kil) kit n (4.4.7)
= — . [ —_— 4.
T (N-K)A| S P N Ner +8n-514

(k=(j+1))

The probability that the patient is under chemotherapy and (N-i) cancer cells are in

the tumor at any arbitrary time after reaching the equilibrium position is denoted as p_

then
[N
P .
1 i+l
Pf —|: . rc c - c
| e[ EcEr
N-1
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p —k
i 1
K Hl ) [ —3 448
+k - ( T'lu z |:T]cr+(N_k_1)Hc:| N ( )
- N .
p
EI\N-k-1 N K+ 1
= K _— K P 449
pc,O ~ (N k nrc z |:ncr+(N_k_i)uc:|+nrc Nmf r,N ( )

Where my is as given in the equation (4.3.2)

When the patient is in recovery state. We can obtain the probability that there are

(N-r) cancer cells in the tumor as P, _, = (A] ~1)p,n
P

N-k = K Prx

Where Ky is as given in the equation (4.2.37) and

N
P .
' | 1 1
=1+Y'K, +— ) —
[p]’ Zl: m; 1( ) Lcr (N—l)u“}
N-1
ipl it -1 1
+1 8 - ¢ _1 i+1-1
T pEe==
N-k
'pk . i—-k .
S\ 1- < i+l-k
K c -1
= (1—k)l"‘° k; | =1 Lcr(N k—l)p}
N
P
N AN-k-1 = N—k+i 1
+ K -1 +n. K, m
S e e S| e ko



Where

1 1
A =—INu +(N-1)A — -
i (N—l)k{ pH(N=1)r+n, n“(mﬁMt']}

1 1
A, =—(N=k+1)u"+(N-k+1)A MNy| ———————— 2<r<N
‘ (N—k)k{( +1)p +(N=k+1)A+7, n'{mﬁ(N—k—l)u“}} r

1 r
Bkzi(Nik)x{(N—k+2)p +1, (N-k+2)
N _ e
Ne +(N-k+2)p° n, +(N-k+3)p°
_ N-i)
1 = k=(j+1)
D, = (-1) Pn,
(N (k—(j+1)
e A n
c || —=r——
Z(:‘ i ( )LJ(N—J'—i)u“}
K, =AkK,,-BXK, ,.-D, (4.4.11)

With this probability distribution of the tumor size in both the states, we can analyse the
tumour behaviour by obtaining the characteristics of the model.

The probability that there are no cancer cells in the tumor when the chemotherapy

is under administration is

N
p
EIN-k-1 = N-—k+i 1
P,= K 1 K, m,
w0 T N—k)! MNre k;( ) Lcﬁ(Nki)u‘}nm Nmt}(pr,N)

(4.4.12)
Similarly the probability that there are no cancer cells in the tumor when the

patient is in recovery state is
P, :(ANKI\H -BKyos _DN)Pr,N (4.4.13)

wherep,  and K are as given in the equations (4.4.11) and (4.2.37).
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from the equations (4.4.12) and (4.4.13) we observe that p_, and p_, are increasing
functions of p' and p° when other parameters are fixed. The values of P, and P, are

decreasing when A is increasing for fixed values of p',u° and N. The probability of

extinction of the malignant cells in the tumor can be increased by choosing optimal drug
dose.

The average number of cancer cells in the tumor is
N N
L= np,,+ mp, (4.4.14)
n=0 n=0

The variance of number of cancer cells in the tumor is

V= inzp,,“ + inzpc,n _(L)Z
n=0

=0
Where L is given in the equation (4.4.14). (4.4.15)

From the equations (4.4.14) and (4.4.15) it is observed that mean and variance of
the number of malignant cells in the tumor is a decreasing function of p’ and p° when
other parameters are fixed. This model also gives the result of the model when the

chemotherapy is continued for long time (not on cyclic basis) when 1, — 0.
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CHAPTER -5
Summary and Conclusion

This book has presented the descriptive modeling of malignant tumor growth based
on cell kinetics. The tumor growth models gain a lot of importance in Biometrics and
Medical Statistics due to their wide applicability in optimal design and analysis of therapy.
A tumor is a mass of tissues formed as a result of abnormal, excessive and inappropriate
proliferation of cells. Due to the complex nature of growth process of tumor, it is
necessary to formulate and integrate models that attempt to describe the growth and
development process of tumors at different levels. Tumor growth models describe the
evolution of the size of a tumor which is assumed to be originate from an initial
transformed (or) proginator cell. The size of cells in tumor is approximated by the number
of cells in it. The number of cells in tumor can usually be estimated indirectly using the
measurements of volume, weight or chemical markers of the tumor. The growth of tumors
is heavily influenced by spontaneous mutation and proliferation and loss processes. The
growth of the number of cells in the tumor is random and time dependent.

Stochastic models are much useful for understanding the cell kinetics of the tumors
and in particularly malignant tumors. Tumor is said to be malignant tumor if it contains
malignant cells. Malignant cells can also be referred as mutant cells. In this dissertation
an attempt is made to develop some suitable stochastic models for cancer cell growth by
assuming the mutation, proliferation and loss process are all poisson for both normal and
mutant cells and analysed using the difference differential equations, generating functions
and Laplace transformation techniques. The behaviour of tumour growth is analyzed in
the light of mutant rates, loss rates and growth rates of cells by deriving the explicit
expressions for the characteristics of the models.

The first chapter of this dissertation briefly introduces the motivation of present
research work along with a review on some relevant contributions in tumour growth
models. Swan (1990) categorized the cancer cell growth models into three categories
namely, (i) Miscellaneous growth kinetic model, (ii) cell cycle model and (iii) other
models, in which the study deals with the first category of models. Mayneord (1932)
pioneered the systematic study of tumour growth. The works of Laird (1964), Burton
(1966), Simpson — Hersen and Lioyed (1970), Sullivan and Solmon (1972) and Steel
(1977) demonstrate the applicability of the Gompertz growth law to tumour growth. Their

results are based upon curve fitting. The Gompertz model is deterministic. In real
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situations tumor cells are subject to irregular growth due to various random factors. The
irregular growth can result in tumor sizes that are different than those predicted by the
deterministic models. To account for the irregular growth stochastic models of tumor
growth have been introduced particularly in the model of cancer cells. Iverson and Arley
(1950) described the growth of transformed cell, a progenitor of a tumor by a pure linear
birth process. Kendall (1960), Neyman and Scott (1967) used a linear birth and death
process to describe the tumor growth. Their model used constant birth and death rates and
hence is also a density independent. Wette, katz and Rodin (1974) developed a stochastic
model for growth of solid tumors based upon the physical characteristics of tumor. This
leads to a density dependent stochastic process for the mean tumor sizes. Dubin (1976)
formulated a density dependent, birth and death processes, to describe the tumor growth
subject to immunological response. Swan (1977) described a method for obtaining the
exact solution to Dubin’s model. Hanson and Tier (1982) developed a stochastic model
for tumor growth which is the diffusion limit of a continuous time density dependent
branching processes. Jain et al. (1995) developed a stochastic model for multistage
tumerogenesis and observed that the tumor latency was strongly influenced by number of
stages and stem cell number at lower mutation rates than at higher rates. Zheng (1998) has
discussed the role of Kolmogrov forward and backward equations in stochastic
carcinogenesis models.

With the brief review, it is evident that very little work has been reported in
literature regarding the tumor growth models with spontaneous mutation and proliferation
process except the models of Birkhead (1986). The spontaneous mutation and
proliferation of tumor cells can be described as a process of cell division with three major
considerations namely, (i) a normal cell may be divided into two normal cells. (i) a
normal cell may be divided into one normal and one mutant cell and (iii) a mutant cell
may be divided into two mutant cells. Due to the recessive oncogenesis hypothesis the
malignant tumor growth can be attributable to the inactivation of both allele genes. Hence
the growth rates and mutation rates of the normal and mutant cells are not homogeneous.
It is also important that the chemotherapy can be administered on cyclical basis, which
creates two heterogeneous environments for the tumor growth namely (i) when the patient
is under chemotherapy and (ii) when the patient is under recovery (Temporary absence of
chemotherapy). So to analyze the tumor growth, with all these considerations (which are
very important for effective drug administration) suitable stochastic models are developed.
The chapter outline of the study is also presented.
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In chapter — II, a stochastic model for tumor growth with spontaneous mutation
and proliferation is developed by assuming that the mutation process of normal and mutant
cells are Poisson with different parameters. It is assumed that the loss process of the
normal and mutant cells are poisson with parameters d;, d, respectively. Using the
Kolmogrov’s equations, the Joint probability generating function of the normal and mutant
cells at a given time ‘t” is obtained. The size of the tumor is the sum of the number of
normal cells and the number of mutant cells in the tumor. So the expected number of
normal cells at any given time ‘t’, the expected number of mutant cells at any given time
‘t’ the variances of normal and mutant cells at any given time ‘t’ and the co-variance
between the number of normal and mutant cells at time ‘t’ are derived by using the
relation between the cumulant generating function and probability generating function.
Using PCAT computer and MATHCAD, the sensitivity of the parameters is analyzed by
computing the values of tumor characteristics for different values of the parameters. It is
observed that when other parameters are fixed, the expected tumor size is an increasing
function of growth and mutant rates. Similarly when the loss parameters d; and d, are
decreasing, the growth of tumor is increasing. It is also observed that the tumor size and
its variability are also influenced by the initial size of the tumor. The dependence between
the normal and mutant cells is increasing as time ‘t’ increases.

The heterogeneity of the growth rates of normal and mutant cells in the tumor may
be attributable to inactivation of both allele genes which is known as recessive
oncogenesis hypothesis. This is incorporated by assuming that the proliferation of mutant
cells is due to sum of natural proliferation and due to inactivation of allele genes. By
using the difference differential equations, the Joint probability generating function of the
number of normal and mutant cells at a given time ‘t” is derived, when the tumor is subject
to spontaneous mutation and proliferation. The expected number of normal cells, the
expected number of mutant cells and their variances at given time ‘t’ are derived by using
the probability generating function. It is observed that, the inactivation of allele genes has
a tremendous influence on the tumor size. The drug efficiency on the tumor is also
investigated by developing and analyzing another stochastic model with the assumption
that when the tumor is under drug administration the loss process of the cells is due to
natural loss and loss due to drug administration. The joint probability generating function
for the number of normal and mutant cells at given time ‘t’ is derived. Using this
probability generating function the expected number of normal cells and their variance are
derived explicitly. The mean tumor size and its variability at given time ‘t” are analysed in
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the light of the loss rate due to drug administration. The mean tumor size is reduced when
0, (the loss rate due to drug administration) increases at a given time ‘t’. The covariance
between the number of normal and mutant cells at a given time ‘t’ is a decreasing function
of O when other parameters are fixed. It is also observed that the variances of number of
both normal and mutant cells are decreasing functions of time ‘t’ when (o+b+f)< (d+6).
Following the heuristic argument of Goldie and Coldman (1979, 85) the drug sensitivity of
this model is investigated by obtaining the probability of cure, which is the probability of
eventual extinction of remaining resistance cells after complete eradication of sensitive
cells.

chapter III deals with a two stage stochastic model for a cancer cell growth with
the assumption that in any malignant tumors there will be premalignant and malignant
clones. In the beginning a normal clone becomes premalignant and later it becomes
malignant if it takes further proliferation. A premalignant cell may extinct without
becoming a malignant cell or it may take mutation and become a malignant cell. The size
of the malignant tumor is heavily influenced by these growth kinetics of malignant cells,
that make up the foci within the foci. This situation in the tumor growth can be suitably
approximated by developing a two stage stochastic model with the assumption that the
growth of premalignant cell, mutation and loss of premalignant and malignant cells are
random and follows poisson process with different parameters. The joint probability
generating function of the number of premalignant cells and malignant cells in the tumor
at a given time is derived by using the difference differential equations. The expected
number of premalignant and malignant cells at a given time ‘t’ and their variances are
obtained explicitly. The average tumor size and its variability are also obtained and
analyzed in the light of the parameters. It is observed that the tumor size is an increasing
function of growth rate. The average tumor size is a decreasing function of d,, the loss
rates at a given time ‘t’. this model is also further extended to analyse the cell duration in
the tumor. The probability that a malignant cell (either premalignant or malignant) which
is initial at t=0 is still in the tumor at time ‘t’ is obtained. The expected duration of a
malignant cell in the tumor and its variance are also obtained. If the mutation rate of
premalignant cells is increasing the average duration of cell in the tumor is increasing
when other parameters are fixed.

In Chapter IV of this study a stochastic model for the mutant cell growth under

chemotherapy is developed and analyzed. In some chemotherapy treatments, the

82



chemotherapy is prescribed on cyclic basis. When an anti cancer drug is induced to the
body both normal and cancer cells are killed. When the normal cells come to a lower
level, care is needed to evaluate the status of the patient because life threatening hazards
may be developed. So an interval of time is to be considered during which the drug may
be discontinued and the patient is allowed to recover, but due to discontinuation of the
drug the tumor will also grow. So at the end of the recovery period, the drug is to be
administered again. This situation is modeled through assuming the growth process and
loss process of the cancer cells are poisson with different parameters for two stages of the
patient, namely (i) when the patient is in recovery state and (ii) when the patient is under
chemotherapy. using the supplementary variable technique the difference differential
equation governing the tumor size probabilities in both state are obtained. The Laplace
transformation of the tumor size distribution under transient conditions is also derived.
Assuming that the tumor is under equilibrium the tumor size distribution when the patient
is under chemotherapy as well as under recovery period are also obtained. Assuming that
the time in which the patient is under chemotherapy is also exponential. The probability
of extinction of the tumor and expected number of cancer cells in the tumor and its
variability are also obtained and analyzed. It is also observed that the efficiency of the
drug is directly linked with the extinction of the malignant cells in the tumor. This model
is very useful for administration of chemotherapy as one can have the prediction of the
tumor size distribution in both states of the patient.

In this last chapter five the ideas and results derived in the earlier chapters are
summarized. Some interesting topics for further research in this area are also pointed out.
SCOPE FOR FURTHER RESEARCH

This study is carried out on the descriptive modeling of the cancer cell growth. It
is also possible to develop optimal control policies based on these models by considering
various risk functions and optimization of the model parameters. The inferential aspects
of these models can also be investigated by developing suitable estimators which require
further investigations.

With the above discussions the stochastic models developed for the cancer cell
growth are useful in approximating the malignant cell growth more accurately under
different conditions. These models are much useful for understanding the cell kinetics and
to administer optimal drug doses in chemotherapy. it is also highly probable to develop
many more stochastic models for cancer cell growth with plausible assumptions in order to
approximate the natural phenomenon more closely.
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